Normalized defining polynomial
\( x^{20} + 160 x^{18} - 150 x^{17} + 10760 x^{16} - 17594 x^{15} + 420700 x^{14} - 860280 x^{13} + 11380600 x^{12} - 24656430 x^{11} + 236068876 x^{10} - 511086650 x^{9} + 3902735955 x^{8} - 7781677350 x^{7} + 48310631580 x^{6} - 71053686994 x^{5} + 401126058450 x^{4} - 312318598760 x^{3} + 2128501694900 x^{2} - 937131504260 x + 6583472493451 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8796562314350871340409503318369388580322265625=3^{10}\cdot 5^{35}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $198.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(975=3\cdot 5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{975}(64,·)$, $\chi_{975}(1,·)$, $\chi_{975}(259,·)$, $\chi_{975}(196,·)$, $\chi_{975}(454,·)$, $\chi_{975}(391,·)$, $\chi_{975}(649,·)$, $\chi_{975}(586,·)$, $\chi_{975}(844,·)$, $\chi_{975}(781,·)$, $\chi_{975}(83,·)$, $\chi_{975}(278,·)$, $\chi_{975}(473,·)$, $\chi_{975}(668,·)$, $\chi_{975}(863,·)$, $\chi_{975}(47,·)$, $\chi_{975}(242,·)$, $\chi_{975}(437,·)$, $\chi_{975}(632,·)$, $\chi_{975}(827,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{14} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{3}{7} a$, $\frac{1}{14} a^{8} - \frac{1}{2} a^{3} - \frac{1}{14} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{9} - \frac{1}{2} a^{4} - \frac{1}{14} a^{3} - \frac{1}{2} a$, $\frac{1}{28} a^{10} - \frac{1}{28} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{28} a^{11} - \frac{1}{28} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{196} a^{12} - \frac{1}{196} a^{11} + \frac{3}{196} a^{10} + \frac{1}{98} a^{9} + \frac{1}{49} a^{8} + \frac{41}{196} a^{6} + \frac{15}{196} a^{5} - \frac{31}{196} a^{4} + \frac{27}{98} a^{3} + \frac{31}{196} a^{2} + \frac{11}{28} a - \frac{1}{4}$, $\frac{1}{196} a^{13} + \frac{1}{98} a^{11} - \frac{1}{98} a^{10} + \frac{3}{98} a^{9} + \frac{1}{49} a^{8} - \frac{1}{196} a^{7} - \frac{3}{14} a^{6} - \frac{4}{49} a^{5} - \frac{17}{49} a^{4} - \frac{13}{196} a^{3} - \frac{22}{49} a^{2} + \frac{5}{14} a - \frac{1}{2}$, $\frac{1}{1372} a^{14} - \frac{1}{1372} a^{13} + \frac{1}{1372} a^{12} + \frac{9}{686} a^{11} + \frac{3}{343} a^{10} - \frac{1}{343} a^{9} + \frac{5}{1372} a^{8} - \frac{41}{1372} a^{7} + \frac{279}{1372} a^{6} + \frac{103}{686} a^{5} - \frac{509}{1372} a^{4} - \frac{423}{1372} a^{3} + \frac{309}{1372} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{2744} a^{15} + \frac{5}{2744} a^{12} + \frac{11}{686} a^{11} + \frac{15}{2744} a^{10} + \frac{71}{2744} a^{9} - \frac{23}{686} a^{8} + \frac{3}{196} a^{7} - \frac{89}{2744} a^{6} - \frac{513}{2744} a^{5} + \frac{139}{2744} a^{4} - \frac{121}{343} a^{3} - \frac{223}{2744} a^{2} - \frac{1}{7} a - \frac{23}{56}$, $\frac{1}{2744} a^{16} + \frac{5}{2744} a^{13} + \frac{1}{1372} a^{12} - \frac{41}{2744} a^{11} + \frac{43}{2744} a^{10} + \frac{5}{686} a^{9} + \frac{5}{196} a^{8} - \frac{89}{2744} a^{7} + \frac{509}{2744} a^{6} - \frac{393}{2744} a^{5} - \frac{142}{343} a^{4} + \frac{57}{2744} a^{3} - \frac{37}{196} a^{2} - \frac{19}{56} a - \frac{1}{2}$, $\frac{1}{19208} a^{17} + \frac{1}{19208} a^{15} - \frac{3}{19208} a^{14} - \frac{9}{9604} a^{13} + \frac{3}{4802} a^{12} + \frac{125}{19208} a^{11} + \frac{261}{19208} a^{10} - \frac{79}{19208} a^{9} - \frac{501}{19208} a^{8} + \frac{319}{19208} a^{7} + \frac{379}{9604} a^{6} + \frac{37}{392} a^{5} - \frac{4691}{9604} a^{4} + \frac{3427}{9604} a^{3} + \frac{363}{1372} a^{2} - \frac{15}{196} a - \frac{3}{56}$, $\frac{1}{486942008} a^{18} - \frac{255}{243471004} a^{17} + \frac{84057}{486942008} a^{16} - \frac{82497}{486942008} a^{15} - \frac{5447}{17390786} a^{14} - \frac{91283}{243471004} a^{13} - \frac{1214447}{486942008} a^{12} + \frac{3803759}{486942008} a^{11} + \frac{87113}{9937592} a^{10} - \frac{10273479}{486942008} a^{9} + \frac{331929}{9937592} a^{8} + \frac{335373}{243471004} a^{7} - \frac{2256847}{486942008} a^{6} - \frac{14122987}{121735502} a^{5} + \frac{44460281}{121735502} a^{4} - \frac{60769847}{121735502} a^{3} - \frac{6208261}{34781572} a^{2} - \frac{4236129}{9937592} a - \frac{161319}{354914}$, $\frac{1}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{19} - \frac{462601971392207495019709421149160255777088505373321789438979266245847}{2995821680308668740637820035852316071214170108005918646060430078170700374187208} a^{18} + \frac{415506842130961950951363377870325501874114394274416285929695398607862482587}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{17} - \frac{1556628896140230143221169927643102017505340226191272092472451473500760828489}{10485375881080340592232370125483106249249595378020715261211505273597451309655228} a^{16} - \frac{382419430571707806274459566915484278380596463167254272738245460368678252588}{2621343970270085148058092531370776562312398844505178815302876318399362827413807} a^{15} + \frac{1102243150819094770473301782863084667755142334860160706918537989714979915319}{5242687940540170296116185062741553124624797689010357630605752636798725654827614} a^{14} + \frac{577362683969863621622831664824822904085914947867523781674282445371750362779}{2995821680308668740637820035852316071214170108005918646060430078170700374187208} a^{13} - \frac{48176902951646893854210482743274307251747203239136701563013518920700960714853}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{12} + \frac{5679691141907293251091873056551265839305914477502999179392302119462194264439}{1497910840154334370318910017926158035607085054002959323030215039085350187093604} a^{11} - \frac{95387088530166973313123016210486600913266455300582847599320094946057965777345}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{10} + \frac{649243117248808589702150634636405689935170446756600989330452431339634850046529}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{9} + \frac{612586639080315126534638876482474744286482378759316822028688478122786155852277}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{8} + \frac{593737507306820467350052866732252909196229555780437037781007639072886905973003}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{7} - \frac{814312540151527327253564365366770111392138188078921940583728723999567177626577}{5242687940540170296116185062741553124624797689010357630605752636798725654827614} a^{6} + \frac{4606912805018487993101651496309579410073629693748880432363384156214017035337961}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{5} + \frac{8293463892752699722773282362821098226788280507121409069620255555679558784406641}{20970751762160681184464740250966212498499190756041430522423010547194902619310456} a^{4} - \frac{1629753317671487833108865666916915983408283386123768736464483550221477162017573}{5242687940540170296116185062741553124624797689010357630605752636798725654827614} a^{3} + \frac{262021325549849610762275759709786694426750714283915385968215813445205351129153}{748955420077167185159455008963079017803542527001479661515107519542675093546802} a^{2} + \frac{138482687044690961719105365120082772700043213801373639876799740555186388439797}{427974525758381248662545719407473724459167158286559806580061439738671482026744} a + \frac{86142153792368548613061956321676244923391524832246958576983469365504833085}{307232251082829324237290537980957447565805569480660306231199884952384409208}$
Class group and class number
$C_{2}\times C_{22048052}$, which has order $44096104$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 208779686.22504243 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 4.0.2471625.1, 5.5.390625.1, 10.10.283274078369140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||