Normalized defining polynomial
\( x^{20} - 2 x^{19} + 4 x^{18} - 8 x^{17} + 12 x^{16} + 4 x^{15} - 4 x^{14} + 16 x^{13} - 16 x^{12} + 8 x^{11} - 20 x^{10} + 16 x^{9} + 116 x^{8} + 96 x^{7} - 80 x^{6} - 256 x^{5} - 110 x^{4} + 92 x^{3} + 96 x^{2} + 32 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87960930222080000000000000=2^{56}\cdot 5^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{10} a^{18} + \frac{1}{5} a^{17} - \frac{1}{5} a^{16} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} - \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{249707776330894730} a^{19} + \frac{5274905533165076}{124853888165447365} a^{18} + \frac{30226336088178923}{249707776330894730} a^{17} - \frac{12608280908847372}{124853888165447365} a^{16} + \frac{43532253808093717}{124853888165447365} a^{15} + \frac{12567317676102218}{124853888165447365} a^{14} + \frac{56444277708321412}{124853888165447365} a^{13} + \frac{19466009430558139}{124853888165447365} a^{12} - \frac{9407942107378750}{24970777633089473} a^{11} + \frac{18497499811307523}{124853888165447365} a^{10} + \frac{42134012097344317}{124853888165447365} a^{9} + \frac{22121555596856874}{124853888165447365} a^{8} + \frac{35418273818937731}{124853888165447365} a^{7} + \frac{6542332683378206}{124853888165447365} a^{6} - \frac{4374235616381434}{24970777633089473} a^{5} - \frac{4283304164770102}{124853888165447365} a^{4} + \frac{52981921379547152}{124853888165447365} a^{3} + \frac{2855449698129282}{124853888165447365} a^{2} - \frac{45238836612433392}{124853888165447365} a + \frac{1434874512343654}{24970777633089473}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{45258167051}{16663309618} a^{19} - \frac{113239975663}{16663309618} a^{18} + \frac{119187867018}{8331654809} a^{17} - \frac{240867577786}{8331654809} a^{16} + \frac{392779768367}{8331654809} a^{15} - \frac{106952084025}{8331654809} a^{14} - \frac{36847345918}{8331654809} a^{13} + \frac{385760509077}{8331654809} a^{12} - \frac{552153782702}{8331654809} a^{11} + \frac{462593306780}{8331654809} a^{10} - \frac{676506324206}{8331654809} a^{9} + \frac{701851847267}{8331654809} a^{8} + \frac{2275668406982}{8331654809} a^{7} + \frac{1028481724792}{8331654809} a^{6} - \frac{2292679230388}{8331654809} a^{5} - \frac{4556707111782}{8331654809} a^{4} - \frac{137059949045}{8331654809} a^{3} + \frac{2120625625589}{8331654809} a^{2} + \frac{1008938119192}{8331654809} a + \frac{160301167397}{8331654809} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 547846.080547 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.320.1, 5.1.256000.1, 10.0.1048576000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |