Normalized defining polynomial
\( x^{20} - 4 x^{19} + 12 x^{18} - 8 x^{17} - 9 x^{16} + 50 x^{15} - 20 x^{14} - 38 x^{13} - 16 x^{12} - 126 x^{11} + 236 x^{10} - 176 x^{9} - 237 x^{8} + 434 x^{7} - 428 x^{6} - 58 x^{5} + 1629 x^{4} - 66 x^{3} - 160 x^{2} - 8 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87887174756230199195247249=3^{10}\cdot 131^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{1}{16} a^{11} - \frac{3}{32} a^{10} - \frac{3}{32} a^{9} - \frac{1}{32} a^{7} - \frac{7}{32} a^{6} + \frac{3}{16} a^{5} - \frac{5}{32} a^{4} - \frac{13}{32} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{32} a^{14} + \frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{1}{16} a^{10} - \frac{3}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{4} a^{7} - \frac{1}{32} a^{6} + \frac{1}{32} a^{5} + \frac{3}{16} a^{4} + \frac{11}{32} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{32} a^{15} + \frac{1}{16} a^{9} - \frac{1}{4} a^{6} + \frac{13}{32} a^{3} - \frac{1}{4}$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{3}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{16} - \frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{5}{64} a^{8} - \frac{11}{64} a^{7} + \frac{3}{16} a^{6} + \frac{15}{128} a^{5} + \frac{1}{128} a^{4} + \frac{17}{64} a^{3} - \frac{5}{16} a^{2} + \frac{3}{16} a - \frac{1}{8}$, $\frac{1}{13568} a^{18} - \frac{7}{3392} a^{17} + \frac{161}{13568} a^{16} + \frac{43}{3392} a^{15} - \frac{37}{3392} a^{14} + \frac{71}{6784} a^{13} - \frac{7}{424} a^{12} + \frac{23}{1696} a^{11} - \frac{1}{212} a^{10} + \frac{713}{6784} a^{9} - \frac{23}{3392} a^{8} - \frac{1307}{6784} a^{7} - \frac{1745}{13568} a^{6} + \frac{121}{3392} a^{5} - \frac{833}{13568} a^{4} + \frac{1697}{6784} a^{3} - \frac{259}{848} a^{2} + \frac{421}{1696} a + \frac{227}{848}$, $\frac{1}{98849109315819008} a^{19} + \frac{1230971153341}{98849109315819008} a^{18} - \frac{189956035007707}{98849109315819008} a^{17} + \frac{145595616380285}{98849109315819008} a^{16} - \frac{81553407643539}{6178069332238688} a^{15} - \frac{451435361999}{49424554657909504} a^{14} + \frac{646819133640151}{49424554657909504} a^{13} - \frac{317478621549869}{6178069332238688} a^{12} + \frac{578572674030945}{6178069332238688} a^{11} - \frac{4624848680600543}{49424554657909504} a^{10} - \frac{4417952683044745}{49424554657909504} a^{9} + \frac{3791331962889955}{49424554657909504} a^{8} - \frac{13209597532818631}{98849109315819008} a^{7} - \frac{6844708089386333}{98849109315819008} a^{6} + \frac{295817258967561}{1190953124286976} a^{5} + \frac{20145247231287457}{98849109315819008} a^{4} - \frac{3103363368093071}{49424554657909504} a^{3} + \frac{210108207292979}{426073747050944} a^{2} - \frac{2195414261346229}{12356138664477376} a - \frac{2310129109011685}{6178069332238688}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6102865552907}{1865077534260736} a^{19} + \frac{12872332362887}{1865077534260736} a^{18} - \frac{27876815375491}{1865077534260736} a^{17} - \frac{86140723279301}{1865077534260736} a^{16} + \frac{8455634514415}{116567345891296} a^{15} - \frac{92819113258147}{932538767130368} a^{14} - \frac{233920514898783}{932538767130368} a^{13} + \frac{27702733797081}{116567345891296} a^{12} + \frac{8829491819405}{29141836472824} a^{11} + \frac{462335467653045}{932538767130368} a^{10} + \frac{55941330005705}{932538767130368} a^{9} - \frac{799376282355673}{932538767130368} a^{8} + \frac{3448832028149953}{1865077534260736} a^{7} + \frac{325651953256921}{1865077534260736} a^{6} - \frac{31280466536143}{22470813665792} a^{5} + \frac{5485935105792763}{1865077534260736} a^{4} - \frac{4530499135485425}{932538767130368} a^{3} - \frac{82350658983441}{8039127302848} a^{2} + \frac{104896237584745}{233134691782592} a + \frac{122705779918309}{116567345891296} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1203172.53469 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-131}) \), \(\Q(\sqrt{393}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-131})\), 5.1.17161.1 x5, 10.0.38579489651.1, 10.2.9374815985193.1 x5, 10.0.71563480803.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $131$ | 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |