Normalized defining polynomial
\( x^{20} - 7 x^{19} + 15 x^{18} - 10 x^{17} + 34 x^{16} - 136 x^{15} + 136 x^{14} - 63 x^{13} + 371 x^{12} - 614 x^{11} + 386 x^{10} - 457 x^{9} + 332 x^{8} - 12 x^{7} + 129 x^{6} + 49 x^{5} + 13 x^{4} + 10 x^{3} + 2 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(874231651432481601634281=3^{10}\cdot 1567^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1567$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{148731819873824917} a^{19} - \frac{40747443773618292}{148731819873824917} a^{18} - \frac{14998647865014271}{148731819873824917} a^{17} - \frac{64436988471893294}{148731819873824917} a^{16} + \frac{18084632589197150}{148731819873824917} a^{15} - \frac{33888769116699080}{148731819873824917} a^{14} - \frac{14520046567734238}{148731819873824917} a^{13} - \frac{5813718783277617}{148731819873824917} a^{12} - \frac{34031415124392144}{148731819873824917} a^{11} + \frac{58771864471994980}{148731819873824917} a^{10} + \frac{35129207982910712}{148731819873824917} a^{9} + \frac{54867219453810918}{148731819873824917} a^{8} - \frac{54474909445098326}{148731819873824917} a^{7} - \frac{6177765967072276}{148731819873824917} a^{6} + \frac{47726560638371105}{148731819873824917} a^{5} + \frac{26820099473390109}{148731819873824917} a^{4} - \frac{21863988723107195}{148731819873824917} a^{3} - \frac{8628116740975497}{148731819873824917} a^{2} - \frac{44570765784835613}{148731819873824917} a + \frac{60942846875657191}{148731819873824917}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6043180895}{11914651339} a^{19} - \frac{44482799536}{11914651339} a^{18} + \frac{104346213914}{11914651339} a^{17} - \frac{80375439309}{11914651339} a^{16} + \frac{191118616181}{11914651339} a^{15} - \frac{853886919079}{11914651339} a^{14} + \frac{1052489505011}{11914651339} a^{13} - \frac{415203197655}{11914651339} a^{12} + \frac{1928007199287}{11914651339} a^{11} - \frac{4196239217689}{11914651339} a^{10} + \frac{3081171388921}{11914651339} a^{9} - \frac{2086582787223}{11914651339} a^{8} + \frac{1316987436521}{11914651339} a^{7} + \frac{381223632518}{11914651339} a^{6} - \frac{46574356203}{11914651339} a^{5} + \frac{320153896977}{11914651339} a^{4} - \frac{42366794492}{11914651339} a^{3} + \frac{41178034543}{11914651339} a^{2} + \frac{28558669325}{11914651339} a + \frac{4068674534}{11914651339} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11086.8488736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.3.14103.1, 10.0.596683827.1, 10.2.935003556909.1, 10.4.311667852303.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1567 | Data not computed | ||||||