Normalized defining polynomial
\( x^{20} - 4 x^{19} + 7 x^{18} - x^{17} - 6 x^{16} - 119 x^{15} + 843 x^{14} - 3114 x^{13} + 8298 x^{12} - 17511 x^{11} + 30458 x^{10} - 45048 x^{9} + 57805 x^{8} - 64072 x^{7} + 59806 x^{6} - 45528 x^{5} + 27366 x^{4} - 12495 x^{3} + 4080 x^{2} - 850 x + 85 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87354219101251702667236328125=5^{15}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{80} a^{16} + \frac{9}{80} a^{15} - \frac{1}{8} a^{14} + \frac{1}{16} a^{13} - \frac{1}{20} a^{12} + \frac{1}{8} a^{11} - \frac{11}{80} a^{10} - \frac{1}{8} a^{9} + \frac{13}{40} a^{8} + \frac{7}{16} a^{7} - \frac{1}{4} a^{6} + \frac{3}{10} a^{5} - \frac{19}{80} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{7}{16}$, $\frac{1}{400} a^{17} + \frac{1}{200} a^{16} - \frac{33}{400} a^{15} + \frac{3}{80} a^{14} + \frac{1}{400} a^{13} - \frac{1}{200} a^{12} + \frac{99}{400} a^{11} - \frac{173}{400} a^{10} - \frac{23}{50} a^{9} - \frac{87}{400} a^{8} - \frac{1}{16} a^{7} + \frac{41}{100} a^{6} + \frac{113}{400} a^{5} + \frac{3}{400} a^{4} - \frac{19}{40} a^{2} + \frac{29}{80} a - \frac{39}{80}$, $\frac{1}{4082800} a^{18} - \frac{105}{163312} a^{17} - \frac{1743}{1020700} a^{16} - \frac{191459}{4082800} a^{15} + \frac{247073}{2041400} a^{14} - \frac{218377}{2041400} a^{13} - \frac{93607}{4082800} a^{12} - \frac{399}{1020700} a^{11} - \frac{822639}{2041400} a^{10} + \frac{1331431}{4082800} a^{9} + \frac{332107}{2041400} a^{8} + \frac{488941}{1020700} a^{7} + \frac{93017}{816560} a^{6} - \frac{122297}{1020700} a^{5} + \frac{170617}{2041400} a^{4} + \frac{1529}{102070} a^{3} - \frac{66811}{163312} a^{2} + \frac{157749}{408280} a - \frac{51293}{204140}$, $\frac{1}{396031600} a^{19} - \frac{1}{198015800} a^{18} - \frac{359867}{396031600} a^{17} - \frac{158643}{39603160} a^{16} + \frac{15321637}{198015800} a^{15} - \frac{355247}{3356200} a^{14} - \frac{1232134}{24751975} a^{13} + \frac{4742883}{396031600} a^{12} - \frac{23887779}{99007900} a^{11} + \frac{20827761}{198015800} a^{10} - \frac{189779943}{396031600} a^{9} - \frac{26406381}{99007900} a^{8} - \frac{48065317}{99007900} a^{7} + \frac{161575287}{396031600} a^{6} - \frac{2788215}{7920632} a^{5} - \frac{48059893}{396031600} a^{4} + \frac{3477091}{79206320} a^{3} - \frac{18828977}{79206320} a^{2} - \frac{3487049}{39603160} a + \frac{14798069}{79206320}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1365722.71668 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{85}) \), 4.0.614125.1, 5.1.614125.1 x5, 10.2.32057708828125.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.614125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{20}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |