Normalized defining polynomial
\( x^{20} - 4 x^{19} + 65 x^{18} - 214 x^{17} + 2035 x^{16} - 5724 x^{15} + 39824 x^{14} - 96080 x^{13} + 534824 x^{12} - 1102236 x^{11} + 5168310 x^{10} - 9006872 x^{9} + 36960084 x^{8} - 53466672 x^{7} + 196375269 x^{6} - 224863132 x^{5} + 733497061 x^{4} - 597365054 x^{3} + 1764047967 x^{2} - 786154512 x + 2065660201 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86825139158850321116448000000000000000=2^{20}\cdot 3^{10}\cdot 5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(660=2^{2}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{660}(1,·)$, $\chi_{660}(323,·)$, $\chi_{660}(647,·)$, $\chi_{660}(587,·)$, $\chi_{660}(529,·)$, $\chi_{660}(467,·)$, $\chi_{660}(203,·)$, $\chi_{660}(23,·)$, $\chi_{660}(229,·)$, $\chi_{660}(289,·)$, $\chi_{660}(421,·)$, $\chi_{660}(169,·)$, $\chi_{660}(301,·)$, $\chi_{660}(47,·)$, $\chi_{660}(287,·)$, $\chi_{660}(49,·)$, $\chi_{660}(181,·)$, $\chi_{660}(361,·)$, $\chi_{660}(443,·)$, $\chi_{660}(383,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{27347951517410290260783} a^{18} - \frac{1827910011980938465684}{27347951517410290260783} a^{17} + \frac{493800810277204215802}{9115983839136763420261} a^{16} + \frac{223071515770156019477}{27347951517410290260783} a^{15} + \frac{1291927620507676731599}{9115983839136763420261} a^{14} + \frac{2714060910309887463764}{27347951517410290260783} a^{13} + \frac{1485556879593325920793}{27347951517410290260783} a^{12} + \frac{762479911029048605051}{27347951517410290260783} a^{11} + \frac{3350665101475949812465}{27347951517410290260783} a^{10} - \frac{1724206235215389963128}{9115983839136763420261} a^{9} - \frac{7365960566265552459073}{27347951517410290260783} a^{8} + \frac{3677654216964824422221}{9115983839136763420261} a^{7} - \frac{10206254912513863664860}{27347951517410290260783} a^{6} - \frac{11043451838754507157523}{27347951517410290260783} a^{5} - \frac{8408760488448597868387}{27347951517410290260783} a^{4} - \frac{11468290887127534440917}{27347951517410290260783} a^{3} - \frac{10026698900722160686135}{27347951517410290260783} a^{2} + \frac{9328724508980657338415}{27347951517410290260783} a - \frac{11757387029511197785337}{27347951517410290260783}$, $\frac{1}{23165855440749749943492156412021652491938659083368843} a^{19} - \frac{1115561594114307246483303575}{7721951813583249981164052137340550830646219694456281} a^{18} + \frac{3056535228854305712321741613591603752511732713028487}{23165855440749749943492156412021652491938659083368843} a^{17} + \frac{2304207189702925833432943849300468206374344795913795}{23165855440749749943492156412021652491938659083368843} a^{16} + \frac{1486251729372586357760876632659618664662594959134786}{23165855440749749943492156412021652491938659083368843} a^{15} + \frac{733071844824178482837615134785850279773545826189555}{23165855440749749943492156412021652491938659083368843} a^{14} - \frac{329498528065891686958112199644496743597897094007400}{7721951813583249981164052137340550830646219694456281} a^{13} + \frac{1784515731984570048291125914416678620415563856626327}{23165855440749749943492156412021652491938659083368843} a^{12} - \frac{1013881306278993555007049083751131865425353248258954}{7721951813583249981164052137340550830646219694456281} a^{11} + \frac{491269250436375203998990611762205682087038744084687}{23165855440749749943492156412021652491938659083368843} a^{10} - \frac{591050411036856820430296440516402611520824990356137}{7721951813583249981164052137340550830646219694456281} a^{9} + \frac{2498591921793791377727770601557347118636837736391761}{23165855440749749943492156412021652491938659083368843} a^{8} - \frac{6360442005725515908267699977796102746513711765288791}{23165855440749749943492156412021652491938659083368843} a^{7} + \frac{2478144828598876598698258992827990007497948250135533}{23165855440749749943492156412021652491938659083368843} a^{6} - \frac{3494836633885577040151975343217691868982016563659728}{7721951813583249981164052137340550830646219694456281} a^{5} - \frac{280493297074722508160230108841882241356016499674507}{7721951813583249981164052137340550830646219694456281} a^{4} + \frac{1203706812023482192825305595242434996129512917815970}{7721951813583249981164052137340550830646219694456281} a^{3} - \frac{1903618638079985966659505214544153267204004195526427}{23165855440749749943492156412021652491938659083368843} a^{2} - \frac{8818033542316041920005635157265137702670146163565022}{23165855440749749943492156412021652491938659083368843} a + \frac{2714000807395014425382086440684675343202509510976256}{23165855440749749943492156412021652491938659083368843}$
Class group and class number
$C_{10}\times C_{31810}$, which has order $318100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.18000.1, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |