Normalized defining polynomial
\( x^{20} - x^{19} + 13 x^{18} - 8 x^{17} + 72 x^{16} + 67 x^{15} + 209 x^{14} + 302 x^{13} + 1705 x^{12} - 816 x^{11} + 7499 x^{10} - 2850 x^{9} + 14636 x^{8} - 2752 x^{7} + 17136 x^{6} - 1344 x^{5} + 12672 x^{4} + 256 x^{3} + 5888 x^{2} + 512 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(856720461657154802252744140625=5^{10}\cdot 41^{5}\cdot 27517559^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 27517559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{3}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{5}{16} a^{9} + \frac{1}{16} a^{8} - \frac{3}{8} a^{7} + \frac{5}{16} a^{6} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} + \frac{1}{32} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} + \frac{11}{32} a^{10} + \frac{1}{32} a^{9} + \frac{5}{16} a^{8} + \frac{5}{32} a^{7} - \frac{1}{2} a^{6} - \frac{1}{32} a^{5} - \frac{5}{16} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{15} + \frac{1}{64} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} + \frac{11}{64} a^{11} - \frac{31}{64} a^{10} - \frac{11}{32} a^{9} + \frac{5}{64} a^{8} + \frac{1}{4} a^{7} + \frac{31}{64} a^{6} + \frac{11}{32} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{16} + \frac{1}{128} a^{15} - \frac{1}{32} a^{14} + \frac{1}{32} a^{13} + \frac{11}{128} a^{12} - \frac{31}{128} a^{11} + \frac{21}{64} a^{10} + \frac{5}{128} a^{9} + \frac{1}{8} a^{8} + \frac{31}{128} a^{7} + \frac{11}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{256} a^{18} - \frac{1}{256} a^{17} + \frac{1}{256} a^{16} - \frac{1}{64} a^{15} + \frac{1}{64} a^{14} + \frac{11}{256} a^{13} - \frac{31}{256} a^{12} + \frac{21}{128} a^{11} + \frac{5}{256} a^{10} - \frac{7}{16} a^{9} - \frac{97}{256} a^{8} + \frac{11}{128} a^{7} + \frac{15}{32} a^{6} - \frac{3}{8} a^{5} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{317803852015279311876690785792} a^{19} + \frac{511852731478205625355610803}{317803852015279311876690785792} a^{18} + \frac{688025712823531016601724561}{317803852015279311876690785792} a^{17} - \frac{464355052261517366502781}{235759534135963881214162304} a^{16} + \frac{231929596802026679999080453}{39725481501909913984586348224} a^{15} + \frac{3407443470525443335812155867}{317803852015279311876690785792} a^{14} + \frac{17892352469552439559494642045}{317803852015279311876690785792} a^{13} + \frac{7955706085711543743754045669}{158901926007639655938345392896} a^{12} - \frac{70705399223799452382388352463}{317803852015279311876690785792} a^{11} + \frac{18887256972560796561930687347}{79450963003819827969172696448} a^{10} + \frac{116214000736313433981147181891}{317803852015279311876690785792} a^{9} - \frac{66477439135038034926119422031}{158901926007639655938345392896} a^{8} + \frac{87320633829524944882860487}{220085770093683733986627968} a^{7} - \frac{6424646433308040957762045865}{39725481501909913984586348224} a^{6} + \frac{9399095942128803464814198099}{19862740750954956992293174112} a^{5} - \frac{1744990615203787382555270869}{4965685187738739248073293528} a^{4} - \frac{386168857294313063354449563}{2482842593869369624036646764} a^{3} - \frac{303443947067678550714083662}{620710648467342406009161691} a^{2} - \frac{263848411324005437893657173}{620710648467342406009161691} a + \frac{144006177692592892462734773}{620710648467342406009161691}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 838972.996958 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1025.1, 10.8.85992371875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 27517559 | Data not computed | ||||||