Properties

Label 20.0.84918716484...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{33}\cdot 3^{16}\cdot 5^{20}\cdot 7^{18}\cdot 31^{10}\cdot 71^{5}$
Root discriminant $3519.25$
Ramified primes $2, 3, 5, 7, 31, 71$
Class number Not computed
Class group Not computed
Galois group $D_4\times F_5$ (as 20T42)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3491873768877677712, -86249720534725440, 498948144686164800, -2743310490056640, 31870420079405760, 20051039556576, 1203701554412640, 2043573174720, 29660149388520, 35717673600, 498984475640, 260683920, 5802206480, 551880, 46048400, -1512, 238720, 0, 730, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 730*x^18 + 238720*x^16 - 1512*x^15 + 46048400*x^14 + 551880*x^13 + 5802206480*x^12 + 260683920*x^11 + 498984475640*x^10 + 35717673600*x^9 + 29660149388520*x^8 + 2043573174720*x^7 + 1203701554412640*x^6 + 20051039556576*x^5 + 31870420079405760*x^4 - 2743310490056640*x^3 + 498948144686164800*x^2 - 86249720534725440*x + 3491873768877677712)
 
gp: K = bnfinit(x^20 + 730*x^18 + 238720*x^16 - 1512*x^15 + 46048400*x^14 + 551880*x^13 + 5802206480*x^12 + 260683920*x^11 + 498984475640*x^10 + 35717673600*x^9 + 29660149388520*x^8 + 2043573174720*x^7 + 1203701554412640*x^6 + 20051039556576*x^5 + 31870420079405760*x^4 - 2743310490056640*x^3 + 498948144686164800*x^2 - 86249720534725440*x + 3491873768877677712, 1)
 

Normalized defining polynomial

\( x^{20} + 730 x^{18} + 238720 x^{16} - 1512 x^{15} + 46048400 x^{14} + 551880 x^{13} + 5802206480 x^{12} + 260683920 x^{11} + 498984475640 x^{10} + 35717673600 x^{9} + 29660149388520 x^{8} + 2043573174720 x^{7} + 1203701554412640 x^{6} + 20051039556576 x^{5} + 31870420079405760 x^{4} - 2743310490056640 x^{3} + 498948144686164800 x^{2} - 86249720534725440 x + 3491873768877677712 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(84918716484613018665985720056760042383483090599116800000000000000000000=2^{33}\cdot 3^{16}\cdot 5^{20}\cdot 7^{18}\cdot 31^{10}\cdot 71^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $3519.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7, 31, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{84} a^{10} - \frac{1}{14} a^{8} + \frac{1}{14} a^{6} + \frac{8}{21} a^{4} - \frac{3}{7} a^{2} + \frac{1}{7}$, $\frac{1}{84} a^{11} + \frac{1}{84} a^{9} + \frac{1}{14} a^{7} - \frac{5}{42} a^{5} - \frac{1}{2} a^{4} + \frac{5}{21} a^{3} + \frac{1}{7} a$, $\frac{1}{504} a^{12} + \frac{1}{252} a^{10} - \frac{1}{126} a^{6} - \frac{4}{63} a^{4} + \frac{5}{42} a^{2} - \frac{1}{7}$, $\frac{1}{504} a^{13} + \frac{1}{252} a^{11} - \frac{1}{126} a^{7} - \frac{4}{63} a^{5} + \frac{5}{42} a^{3} - \frac{1}{7} a$, $\frac{1}{504} a^{14} + \frac{1}{252} a^{10} - \frac{5}{63} a^{8} + \frac{1}{42} a^{6} - \frac{47}{126} a^{4} + \frac{4}{21} a^{2} + \frac{3}{7}$, $\frac{1}{3024} a^{15} - \frac{1}{1512} a^{13} + \frac{1}{189} a^{11} - \frac{1}{168} a^{10} - \frac{4}{189} a^{9} + \frac{1}{28} a^{8} + \frac{8}{189} a^{7} + \frac{1}{21} a^{6} - \frac{139}{756} a^{5} + \frac{1}{7} a^{4} - \frac{1}{3} a^{3} + \frac{1}{21} a^{2} - \frac{1}{7} a - \frac{1}{14}$, $\frac{1}{18144} a^{16} + \frac{5}{9072} a^{14} + \frac{1}{4536} a^{12} - \frac{1}{336} a^{11} - \frac{25}{4536} a^{10} + \frac{1}{56} a^{9} - \frac{17}{2268} a^{8} + \frac{1}{42} a^{7} - \frac{145}{4536} a^{6} + \frac{1}{14} a^{5} + \frac{5}{18} a^{4} - \frac{10}{21} a^{3} + \frac{17}{42} a^{2} + \frac{25}{84} a - \frac{1}{2}$, $\frac{1}{18144} a^{17} - \frac{1}{9072} a^{15} - \frac{1}{2268} a^{13} - \frac{1}{1008} a^{12} + \frac{17}{4536} a^{11} - \frac{1}{504} a^{10} - \frac{2}{81} a^{9} + \frac{155}{4536} a^{7} - \frac{5}{63} a^{6} - \frac{11}{378} a^{5} + \frac{25}{126} a^{4} - \frac{5}{21} a^{3} - \frac{5}{84} a^{2} + \frac{3}{14} a - \frac{3}{7}$, $\frac{1}{160655450365417862201168663281450848096} a^{18} - \frac{8132938566204954293607378039767}{546447110086455313609417222045751184} a^{17} - \frac{1830805142788800409229227739565241}{80327725182708931100584331640725424048} a^{16} - \frac{31565916234155744245257892895443}{273223555043227656804708611022875592} a^{15} - \frac{29920801826412765475946862454301981}{40163862591354465550292165820362712024} a^{14} + \frac{413355412458194833035730211298097}{546447110086455313609417222045751184} a^{13} + \frac{244465362726787684402202928674749}{409835332564841485207062916534313388} a^{12} + \frac{507560828048311779552782630869771}{273223555043227656804708611022875592} a^{11} - \frac{126329910004326619218491058297613}{204917666282420742603531458267156694} a^{10} - \frac{14931375809580581344302332304654223}{956282442651296798816480138580064572} a^{9} + \frac{291763891354287064745690780167024373}{5737694655907780792898880831480387432} a^{8} + \frac{49528835234135808229594638783381035}{956282442651296798816480138580064572} a^{7} - \frac{36614669977587729803671832889638263}{478141221325648399408240069290032286} a^{6} + \frac{6201504375354534364093537847809217}{26563401184758244411568892738335127} a^{5} + \frac{9692895869330700740393777381391094}{185943808293307710880982249168345889} a^{4} - \frac{49727053500883993170528750017069111}{106253604739032977646275570953340508} a^{3} + \frac{7898709790147055368814996115566614}{20660423143700856764553583240927321} a^{2} - \frac{561148429535912084008694484403880}{8854467061586081470522964246111709} a + \frac{2354707097647895965181817061649058}{20660423143700856764553583240927321}$, $\frac{1}{15821404882087659004356718811426262998432185308092213806038042819375391375062624} a^{19} - \frac{955437717751550168836337483313949679345}{5273801627362553001452239603808754332810728436030737935346014273125130458354208} a^{18} - \frac{413549564433482507085887115565102735212800950387941076740512620963783580771}{15821404882087659004356718811426262998432185308092213806038042819375391375062624} a^{17} - \frac{113182794133472489012107880428123328018756742400547382829293943092446205997}{5273801627362553001452239603808754332810728436030737935346014273125130458354208} a^{16} + \frac{245981564779558590382144616422128193726465998470097399012193706560180995197}{1977675610260957375544589851428282874804023163511526725754755352421923921882828} a^{15} - \frac{975318677279749683462168067632468132221250462762415132540456602902845424227}{1318450406840638250363059900952188583202682109007684483836503568281282614588552} a^{14} + \frac{295332611978043465552499163655832290525130074979256600758663133759286677299}{1130100348720547071739765629387590214173727522006586700431288772812527955361616} a^{13} + \frac{75118486940073952477062118762811809100092279930321439413897963735749152825}{125566705413394119082196181043065579352636391334065188936809863645836439484624} a^{12} - \frac{4130248516412760588743195320288318774505747481860609688292449414373174803023}{1130100348720547071739765629387590214173727522006586700431288772812527955361616} a^{11} + \frac{617591665023611879580442775992155503497924685369176426900709592642558005563}{188350058120091178623294271564598369028954587001097783405214795468754659226936} a^{10} + \frac{6788215676051467667626011623509785199301901387678831743254092446420742148579}{282525087180136767934941407346897553543431880501646675107822193203131988840404} a^{9} - \frac{1687939375521400874950090975828355542216465999834947751679420359951592465177}{188350058120091178623294271564598369028954587001097783405214795468754659226936} a^{8} + \frac{4790893849080438816236176012735716376007053092786161833628954729306337985369}{188350058120091178623294271564598369028954587001097783405214795468754659226936} a^{7} + \frac{7741963389825133605243890990694560729787728742545785660271122567101486568073}{188350058120091178623294271564598369028954587001097783405214795468754659226936} a^{6} - \frac{20819007490306310423681113017213096411946039819713997870669550310518671510621}{219741734473439708393843316825364763867113684834614080639417261380213769098092} a^{5} + \frac{10793535834994255463306076951208297184859357773421421275167621471609159034239}{73247244824479902797947772275121587955704561611538026879805753793404589699364} a^{4} + \frac{980800119132818594669182235164964543578605524600335922205728876221707688707}{8138582758275544755327530252791287550633840179059780764422861532600509966596} a^{3} + \frac{11070214290437645256828032572643603631000866143703048388271704324139405536175}{24415748274826634265982590758373862651901520537179342293268584597801529899788} a^{2} - \frac{5585342841519876021200143223902590608570128422042766140557113596219675431669}{24415748274826634265982590758373862651901520537179342293268584597801529899788} a + \frac{773393003787257107533575259046513930555902481088164669829718504374317247757}{2034645689568886188831882563197821887658460044764945191105715383150127491649}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4\times F_5$ (as 20T42):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 160
The 25 conjugacy class representatives for $D_4\times F_5$
Character table for $D_4\times F_5$ is not computed

Intermediate fields

\(\Q(\sqrt{217}) \), 4.0.106986208.3, 5.1.9724050000.14, 10.2.18949636158212068942500000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R $20$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ R ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.14.1$x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$$10$$1$$14$$F_{5}\times C_2$$[2]_{5}^{4}$
2.10.19.1$x^{10} - 2$$10$$1$$19$$F_{5}\times C_2$$[3]_{5}^{4}$
$3$3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
5Data not computed
$7$7.10.9.2$x^{10} + 14$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
7.10.9.2$x^{10} + 14$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
$31$31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} - 31$$2$$1$$1$$C_2$$[\ ]_{2}$
$71$71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$