Properties

Label 20.0.84142145903...0000.4
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{34}\cdot 13^{10}$
Root discriminant $111.24$
Ramified primes $2, 5, 13$
Class number $6368888$ (GRH)
Class group $[6368888]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![551416888049, -1551975480, 283651665155, -198685110, 69517358130, 3591456, 10673029575, 2562310, 1136139650, 236110, 87672445, 9830, 4975165, 160, 205640, -2, 5955, 0, 110, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 110*x^18 + 5955*x^16 - 2*x^15 + 205640*x^14 + 160*x^13 + 4975165*x^12 + 9830*x^11 + 87672445*x^10 + 236110*x^9 + 1136139650*x^8 + 2562310*x^7 + 10673029575*x^6 + 3591456*x^5 + 69517358130*x^4 - 198685110*x^3 + 283651665155*x^2 - 1551975480*x + 551416888049)
 
gp: K = bnfinit(x^20 + 110*x^18 + 5955*x^16 - 2*x^15 + 205640*x^14 + 160*x^13 + 4975165*x^12 + 9830*x^11 + 87672445*x^10 + 236110*x^9 + 1136139650*x^8 + 2562310*x^7 + 10673029575*x^6 + 3591456*x^5 + 69517358130*x^4 - 198685110*x^3 + 283651665155*x^2 - 1551975480*x + 551416888049, 1)
 

Normalized defining polynomial

\( x^{20} + 110 x^{18} + 5955 x^{16} - 2 x^{15} + 205640 x^{14} + 160 x^{13} + 4975165 x^{12} + 9830 x^{11} + 87672445 x^{10} + 236110 x^{9} + 1136139650 x^{8} + 2562310 x^{7} + 10673029575 x^{6} + 3591456 x^{5} + 69517358130 x^{4} - 198685110 x^{3} + 283651665155 x^{2} - 1551975480 x + 551416888049 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(84142145903930664062500000000000000000000=2^{20}\cdot 5^{34}\cdot 13^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $111.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1300=2^{2}\cdot 5^{2}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1300}(1,·)$, $\chi_{1300}(1091,·)$, $\chi_{1300}(261,·)$, $\chi_{1300}(519,·)$, $\chi_{1300}(521,·)$, $\chi_{1300}(779,·)$, $\chi_{1300}(781,·)$, $\chi_{1300}(1039,·)$, $\chi_{1300}(209,·)$, $\chi_{1300}(259,·)$, $\chi_{1300}(469,·)$, $\chi_{1300}(729,·)$, $\chi_{1300}(989,·)$, $\chi_{1300}(1249,·)$, $\chi_{1300}(1041,·)$, $\chi_{1300}(1299,·)$, $\chi_{1300}(51,·)$, $\chi_{1300}(311,·)$, $\chi_{1300}(571,·)$, $\chi_{1300}(831,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} - \frac{3}{7} a^{17} + \frac{2}{7} a^{16} + \frac{2}{7} a^{15} + \frac{3}{7} a^{14} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{4} - \frac{1}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{19} - \frac{3569813111083438538339330176915463268327474839604837636679292854809264463058}{118390739178338379381228172194211343980341082456412152246628653801974472439293} a^{18} + \frac{92033776677661937193288159746315560105084015435610822830321781973422553381}{118390739178338379381228172194211343980341082456412152246628653801974472439293} a^{17} + \frac{325441794341998441916478715734607843689895049722480256719030454059892594551830}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{16} - \frac{59074585121818471553293166217665801856695137760003663654117776993496050321209}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{15} - \frac{333114977244538603677689192141103164331234400733074167286520934792789199456795}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{14} - \frac{55814785251575707357224167768328687086625638523907031385623873783915436446151}{118390739178338379381228172194211343980341082456412152246628653801974472439293} a^{13} + \frac{256800001087062433422431100210170058455424157523039870610611049986761362750360}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{12} - \frac{399711530389704250504420736538243700826664901037117816197140194070437288629569}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{11} - \frac{32558119881098435981587406783111952096237212021232274830958303242476776464407}{118390739178338379381228172194211343980341082456412152246628653801974472439293} a^{10} + \frac{364089292594153705319492576665921173829295323559391805346904645240826142298106}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{9} + \frac{311230281107291662986302096322435136810737270986582223464207424573575398437920}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{8} + \frac{277064638014706088321318322726287120071909918425006028658249663630905505369599}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{7} + \frac{1680687220075221461319330313543005648357592932522679264246036007654346380996}{118390739178338379381228172194211343980341082456412152246628653801974472439293} a^{6} - \frac{326603589771320189495113381365323404321366770175621325056700725479627620070614}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{5} - \frac{209565870676760133808892654309631632554375877165795790726936043880865194041557}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{4} - \frac{339883631452141928892694198160704745049713817014461866314860431992345539915842}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{3} + \frac{410893483590601061818402343437868932452690545934687920191391925777066747519442}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a^{2} - \frac{380253712166098787422637578207483895324546237193705404905941108281045061413057}{828735174248368655668597205359479407862387577194885065726400576613821307075051} a - \frac{3459849461457797775104550009472122903641612321466938124989992206956613911404}{8205298754934343125431655498608707008538490863315693720063372045681399079951}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6368888}$, which has order $6368888$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 161406.8376411007 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-65}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{5}, \sqrt{-13})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.290072656250000000000.3, 10.0.58014531250000000000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
13Data not computed