Normalized defining polynomial
\( x^{20} - 6 x^{19} + 15 x^{18} - 36 x^{17} + 115 x^{16} - 242 x^{15} + 466 x^{14} - 1176 x^{13} + 1851 x^{12} - 2716 x^{11} + 6539 x^{10} - 8834 x^{9} + 13461 x^{8} - 34154 x^{7} + 25816 x^{6} + 22302 x^{5} - 11105 x^{4} - 18754 x^{3} - 10375 x^{2} + 2366 x + 18671 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(841414466600402000000000000000=2^{16}\cdot 5^{15}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{11} - \frac{1}{2} a^{9} + \frac{1}{10} a^{8} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{11} + \frac{1}{10} a^{10} + \frac{1}{5} a^{9} - \frac{1}{2} a^{8} + \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{1}{10}$, $\frac{1}{50} a^{15} - \frac{1}{50} a^{14} - \frac{1}{50} a^{12} - \frac{1}{5} a^{11} + \frac{3}{25} a^{10} + \frac{3}{50} a^{9} + \frac{12}{25} a^{8} - \frac{1}{25} a^{7} - \frac{8}{25} a^{6} - \frac{23}{50} a^{5} + \frac{1}{5} a^{4} + \frac{13}{50} a^{3} - \frac{1}{10} a^{2} - \frac{17}{50} a + \frac{3}{50}$, $\frac{1}{50} a^{16} - \frac{1}{50} a^{14} - \frac{1}{50} a^{13} - \frac{1}{50} a^{12} + \frac{1}{50} a^{11} + \frac{9}{50} a^{10} - \frac{23}{50} a^{9} + \frac{7}{50} a^{8} + \frac{7}{50} a^{7} + \frac{21}{50} a^{6} - \frac{13}{50} a^{5} + \frac{4}{25} a^{4} - \frac{17}{50} a^{3} - \frac{11}{25} a^{2} + \frac{3}{25} a - \frac{6}{25}$, $\frac{1}{50} a^{17} - \frac{1}{25} a^{14} - \frac{1}{50} a^{13} - \frac{1}{50} a^{11} + \frac{4}{25} a^{10} - \frac{3}{10} a^{9} + \frac{3}{25} a^{8} + \frac{19}{50} a^{7} - \frac{2}{25} a^{6} + \frac{1}{5} a^{5} + \frac{9}{25} a^{4} - \frac{9}{50} a^{3} - \frac{12}{25} a^{2} - \frac{2}{25} a - \frac{11}{25}$, $\frac{1}{159500} a^{18} + \frac{179}{31900} a^{17} - \frac{139}{159500} a^{16} - \frac{31}{15950} a^{15} + \frac{619}{39875} a^{14} - \frac{1094}{39875} a^{13} + \frac{883}{79750} a^{12} - \frac{4204}{39875} a^{11} + \frac{7691}{159500} a^{10} - \frac{6091}{14500} a^{9} - \frac{60421}{159500} a^{8} - \frac{12109}{39875} a^{7} - \frac{24603}{79750} a^{6} - \frac{17074}{39875} a^{5} + \frac{2797}{79750} a^{4} - \frac{473}{1450} a^{3} + \frac{59099}{159500} a^{2} - \frac{857}{31900} a + \frac{37289}{159500}$, $\frac{1}{33677152551206397244300266059500} a^{19} + \frac{12566009199512244838560623}{8419288137801599311075066514875} a^{18} + \frac{1719990307253875822570517929}{8419288137801599311075066514875} a^{17} - \frac{71834909305025614325688398073}{33677152551206397244300266059500} a^{16} - \frac{54479991485901684533372199137}{16838576275603198622150133029750} a^{15} + \frac{20220924841074961488080006647}{580640561227696504212073552750} a^{14} - \frac{413879867168746994703278901833}{16838576275603198622150133029750} a^{13} + \frac{211421711924516425955426427923}{16838576275603198622150133029750} a^{12} - \frac{3469170294480437166390368615031}{33677152551206397244300266059500} a^{11} + \frac{2922998795218157096081682077423}{16838576275603198622150133029750} a^{10} - \frac{1802394517976951019614030907242}{8419288137801599311075066514875} a^{9} - \frac{2196534806365240085315235063563}{33677152551206397244300266059500} a^{8} - \frac{4207368528055705084619278683022}{8419288137801599311075066514875} a^{7} - \frac{3401449046756605956366230379719}{16838576275603198622150133029750} a^{6} - \frac{1926719085263629582639744051172}{8419288137801599311075066514875} a^{5} + \frac{1636923024286526129813821911459}{16838576275603198622150133029750} a^{4} + \frac{8577658973991559480401974237699}{33677152551206397244300266059500} a^{3} + \frac{1420066704411022301029391560567}{8419288137801599311075066514875} a^{2} + \frac{1099491108222196663306808108457}{16838576275603198622150133029750} a - \frac{12021666370641981797331579976877}{33677152551206397244300266059500}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2498106.65213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.105125.2, 5.1.1682000.2 x5, 10.2.14145620000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1682000.2 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |