Normalized defining polynomial
\( x^{20} - 8 x^{19} + 49 x^{18} - 154 x^{17} + 472 x^{16} - 1742 x^{15} + 10710 x^{14} - 58962 x^{13} + 245772 x^{12} - 779470 x^{11} + 1916506 x^{10} - 3774324 x^{9} + 7846830 x^{8} - 13098808 x^{7} + 20131243 x^{6} + 4732336 x^{5} + 18103847 x^{4} + 727124 x^{3} + 4672912 x^{2} - 318602 x + 899981 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(840131554159078490545383021874065178624=2^{24}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{19} + \frac{772202138438939479989660144304386976997498412268628399390614788926392743181459}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{18} - \frac{626818016278532644065414825587838620367507645784933505949152306006508000265779}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{17} + \frac{270663534010886190732804830561966028451589416803372299864996231844601315897276}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{16} + \frac{360961805997095905015401748351008887302439662552603207195578309735028355539783}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{15} - \frac{1330199777948523684997015329124050655892135811102345782619087137555671766150318}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{14} - \frac{853502637002090052339011085171553344610328234919043472932621870111798061289225}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{13} - \frac{318083587730746163193664171126289336963931303902101407101520690217125352262700}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{12} + \frac{746438400430951840616270691593418775588814727917742961778719007353591212889450}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{11} + \frac{1300554294955947696151377475456838026585217336086793760032427452427812647601108}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{10} - \frac{645098017687559670035920372485009737262214647925477039323050010304177005976435}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{9} + \frac{140669413409999505190171358940712030872818886635807952275719500417645445320749}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{8} - \frac{1374193379055102860511301699269570175990724483961309504545571180364833204766912}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{7} - \frac{316515893404521197654686861947342414587965549855527003770123213597190171303522}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{6} - \frac{1178399945170461164648675368093816555726399598572744641587944384169690870251261}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{5} + \frac{126627555945260898479140619501833065269923085597632498390574671807417526657435}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{4} + \frac{531834323335926173683202192553029178462531501764672597803540136009318710149190}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a^{3} + \frac{10904039321622667539190773533506194868174424912538931316702631558279304841546}{30966043115422504774099846727809049984577506230864862150487131347948460585543} a^{2} + \frac{150212407124163838720347673101262544988438598325402400768157352783232108449981}{3127570354657672982184084519508714048442328129317351077199200266142794519139843} a + \frac{529301178838144611663150460985816816314998408898861265113443052990826471302041}{3127570354657672982184084519508714048442328129317351077199200266142794519139843}$
Class group and class number
$C_{6}\times C_{4350}$, which has order $26100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5520444.6153 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.7 | $x^{8} + 4 x^{6} + 8 x^{2} + 80$ | $2$ | $4$ | $12$ | $C_8:C_2$ | $[2, 3]^{4}$ |
| 2.12.12.27 | $x^{12} - 18 x^{10} + 171 x^{8} + 116 x^{6} - 313 x^{4} + 190 x^{2} + 877$ | $6$ | $2$ | $12$ | 12T30 | $[4/3, 4/3]_{3}^{4}$ | |
| 33769 | Data not computed | ||||||