Normalized defining polynomial
\( x^{20} - x^{19} + 2 x^{18} + 36 x^{17} - 29 x^{16} + 51 x^{15} + 413 x^{14} - 267 x^{13} + 414 x^{12} + 1778 x^{11} - 745 x^{10} + 691 x^{9} + 3278 x^{8} - 541 x^{7} - 1330 x^{6} + 1820 x^{5} - 261 x^{4} - 439 x^{3} + 2983 x^{2} - 522 x + 611 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8341936223273428359616333847680741=61^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{61}(1,·)$, $\chi_{61}(3,·)$, $\chi_{61}(8,·)$, $\chi_{61}(9,·)$, $\chi_{61}(11,·)$, $\chi_{61}(20,·)$, $\chi_{61}(23,·)$, $\chi_{61}(24,·)$, $\chi_{61}(27,·)$, $\chi_{61}(28,·)$, $\chi_{61}(33,·)$, $\chi_{61}(34,·)$, $\chi_{61}(37,·)$, $\chi_{61}(38,·)$, $\chi_{61}(41,·)$, $\chi_{61}(50,·)$, $\chi_{61}(52,·)$, $\chi_{61}(53,·)$, $\chi_{61}(58,·)$, $\chi_{61}(60,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} + \frac{3}{13} a^{10} - \frac{1}{13} a^{8} - \frac{3}{13} a^{7} + \frac{1}{13} a^{5} + \frac{3}{13} a^{4} - \frac{1}{13} a^{2} - \frac{3}{13} a$, $\frac{1}{13} a^{12} + \frac{4}{13} a^{10} - \frac{1}{13} a^{9} - \frac{4}{13} a^{7} + \frac{1}{13} a^{6} + \frac{4}{13} a^{4} - \frac{1}{13} a^{3} - \frac{4}{13} a$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{3}$, $\frac{1}{611} a^{16} + \frac{17}{611} a^{15} + \frac{1}{47} a^{14} - \frac{1}{611} a^{13} + \frac{4}{611} a^{12} + \frac{4}{611} a^{11} - \frac{271}{611} a^{10} + \frac{113}{611} a^{9} + \frac{87}{611} a^{8} - \frac{223}{611} a^{7} + \frac{277}{611} a^{6} + \frac{69}{611} a^{5} - \frac{168}{611} a^{4} - \frac{255}{611} a^{3} + \frac{295}{611} a^{2} + \frac{38}{611} a$, $\frac{1}{611} a^{17} + \frac{6}{611} a^{15} + \frac{1}{47} a^{14} + \frac{21}{611} a^{13} - \frac{17}{611} a^{12} - \frac{10}{611} a^{11} - \frac{215}{611} a^{10} - \frac{48}{611} a^{9} - \frac{198}{611} a^{8} - \frac{162}{611} a^{7} + \frac{295}{611} a^{6} + \frac{210}{611} a^{5} + \frac{110}{611} a^{4} + \frac{24}{611} a^{3} - \frac{42}{611} a^{2} + \frac{12}{611} a$, $\frac{1}{7943} a^{18} + \frac{6}{7943} a^{17} - \frac{4}{7943} a^{16} - \frac{215}{7943} a^{15} - \frac{172}{7943} a^{14} + \frac{119}{7943} a^{13} - \frac{105}{7943} a^{12} + \frac{202}{7943} a^{11} + \frac{3722}{7943} a^{10} - \frac{1052}{7943} a^{9} - \frac{2737}{7943} a^{8} + \frac{1036}{7943} a^{7} - \frac{132}{7943} a^{6} - \frac{3691}{7943} a^{5} - \frac{2007}{7943} a^{4} - \frac{2189}{7943} a^{3} + \frac{1322}{7943} a^{2} - \frac{3880}{7943} a + \frac{3}{13}$, $\frac{1}{1459187418855718731023} a^{19} + \frac{71588855505119702}{1459187418855718731023} a^{18} - \frac{9866776487534390}{31046540826717419809} a^{17} - \frac{808552113296549277}{1459187418855718731023} a^{16} - \frac{26568493924809314463}{1459187418855718731023} a^{15} + \frac{29067909814587736332}{1459187418855718731023} a^{14} - \frac{22205036471015043602}{1459187418855718731023} a^{13} - \frac{53057262527011422338}{1459187418855718731023} a^{12} + \frac{50661271734256702284}{1459187418855718731023} a^{11} - \frac{5286136387776578952}{112245186065824517771} a^{10} - \frac{606396326625827563232}{1459187418855718731023} a^{9} + \frac{609579628493693634544}{1459187418855718731023} a^{8} - \frac{321144900268723759463}{1459187418855718731023} a^{7} - \frac{289926439569863927836}{1459187418855718731023} a^{6} + \frac{42823027067232406473}{1459187418855718731023} a^{5} - \frac{85030557258461786654}{1459187418855718731023} a^{4} - \frac{723497774961558747364}{1459187418855718731023} a^{3} + \frac{630816575343483879501}{1459187418855718731023} a^{2} + \frac{544587768651235071472}{1459187418855718731023} a - \frac{597908067529066610}{2388195448209032293}$
Class group and class number
$C_{41}$, which has order $41$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36549838.4715 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.0.226981.1, 5.5.13845841.1, 10.10.11694146092834141.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{20}$ | $20$ | $20$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||