Properties

Label 20.0.834...741.1
Degree $20$
Signature $[0, 10]$
Discriminant $8.342\times 10^{33}$
Root discriminant \(49.67\)
Ramified prime $61$
Class number $41$ (GRH)
Class group [41] (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 2*x^18 + 36*x^17 - 29*x^16 + 51*x^15 + 413*x^14 - 267*x^13 + 414*x^12 + 1778*x^11 - 745*x^10 + 691*x^9 + 3278*x^8 - 541*x^7 - 1330*x^6 + 1820*x^5 - 261*x^4 - 439*x^3 + 2983*x^2 - 522*x + 611)
 
gp: K = bnfinit(y^20 - y^19 + 2*y^18 + 36*y^17 - 29*y^16 + 51*y^15 + 413*y^14 - 267*y^13 + 414*y^12 + 1778*y^11 - 745*y^10 + 691*y^9 + 3278*y^8 - 541*y^7 - 1330*y^6 + 1820*y^5 - 261*y^4 - 439*y^3 + 2983*y^2 - 522*y + 611, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - x^19 + 2*x^18 + 36*x^17 - 29*x^16 + 51*x^15 + 413*x^14 - 267*x^13 + 414*x^12 + 1778*x^11 - 745*x^10 + 691*x^9 + 3278*x^8 - 541*x^7 - 1330*x^6 + 1820*x^5 - 261*x^4 - 439*x^3 + 2983*x^2 - 522*x + 611);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - x^19 + 2*x^18 + 36*x^17 - 29*x^16 + 51*x^15 + 413*x^14 - 267*x^13 + 414*x^12 + 1778*x^11 - 745*x^10 + 691*x^9 + 3278*x^8 - 541*x^7 - 1330*x^6 + 1820*x^5 - 261*x^4 - 439*x^3 + 2983*x^2 - 522*x + 611)
 

\( x^{20} - x^{19} + 2 x^{18} + 36 x^{17} - 29 x^{16} + 51 x^{15} + 413 x^{14} - 267 x^{13} + 414 x^{12} + \cdots + 611 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(8341936223273428359616333847680741\) \(\medspace = 61^{19}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(49.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $61^{19/20}\approx 49.6664756335031$
Ramified primes:   \(61\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{61}) \)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(61\)
Dirichlet character group:    $\lbrace$$\chi_{61}(1,·)$, $\chi_{61}(3,·)$, $\chi_{61}(8,·)$, $\chi_{61}(9,·)$, $\chi_{61}(11,·)$, $\chi_{61}(20,·)$, $\chi_{61}(23,·)$, $\chi_{61}(24,·)$, $\chi_{61}(27,·)$, $\chi_{61}(28,·)$, $\chi_{61}(33,·)$, $\chi_{61}(34,·)$, $\chi_{61}(37,·)$, $\chi_{61}(38,·)$, $\chi_{61}(41,·)$, $\chi_{61}(50,·)$, $\chi_{61}(52,·)$, $\chi_{61}(53,·)$, $\chi_{61}(58,·)$, $\chi_{61}(60,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{512}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13}a^{11}+\frac{3}{13}a^{10}-\frac{1}{13}a^{8}-\frac{3}{13}a^{7}+\frac{1}{13}a^{5}+\frac{3}{13}a^{4}-\frac{1}{13}a^{2}-\frac{3}{13}a$, $\frac{1}{13}a^{12}+\frac{4}{13}a^{10}-\frac{1}{13}a^{9}-\frac{4}{13}a^{7}+\frac{1}{13}a^{6}+\frac{4}{13}a^{4}-\frac{1}{13}a^{3}-\frac{4}{13}a$, $\frac{1}{13}a^{13}-\frac{1}{13}a$, $\frac{1}{13}a^{14}-\frac{1}{13}a^{2}$, $\frac{1}{13}a^{15}-\frac{1}{13}a^{3}$, $\frac{1}{611}a^{16}+\frac{17}{611}a^{15}+\frac{1}{47}a^{14}-\frac{1}{611}a^{13}+\frac{4}{611}a^{12}+\frac{4}{611}a^{11}-\frac{271}{611}a^{10}+\frac{113}{611}a^{9}+\frac{87}{611}a^{8}-\frac{223}{611}a^{7}+\frac{277}{611}a^{6}+\frac{69}{611}a^{5}-\frac{168}{611}a^{4}-\frac{255}{611}a^{3}+\frac{295}{611}a^{2}+\frac{38}{611}a$, $\frac{1}{611}a^{17}+\frac{6}{611}a^{15}+\frac{1}{47}a^{14}+\frac{21}{611}a^{13}-\frac{17}{611}a^{12}-\frac{10}{611}a^{11}-\frac{215}{611}a^{10}-\frac{48}{611}a^{9}-\frac{198}{611}a^{8}-\frac{162}{611}a^{7}+\frac{295}{611}a^{6}+\frac{210}{611}a^{5}+\frac{110}{611}a^{4}+\frac{24}{611}a^{3}-\frac{42}{611}a^{2}+\frac{12}{611}a$, $\frac{1}{7943}a^{18}+\frac{6}{7943}a^{17}-\frac{4}{7943}a^{16}-\frac{215}{7943}a^{15}-\frac{172}{7943}a^{14}+\frac{119}{7943}a^{13}-\frac{105}{7943}a^{12}+\frac{202}{7943}a^{11}+\frac{3722}{7943}a^{10}-\frac{1052}{7943}a^{9}-\frac{2737}{7943}a^{8}+\frac{1036}{7943}a^{7}-\frac{132}{7943}a^{6}-\frac{3691}{7943}a^{5}-\frac{2007}{7943}a^{4}-\frac{2189}{7943}a^{3}+\frac{1322}{7943}a^{2}-\frac{3880}{7943}a+\frac{3}{13}$, $\frac{1}{14\!\cdots\!23}a^{19}+\frac{71\!\cdots\!02}{14\!\cdots\!23}a^{18}-\frac{98\!\cdots\!90}{31\!\cdots\!09}a^{17}-\frac{80\!\cdots\!77}{14\!\cdots\!23}a^{16}-\frac{26\!\cdots\!63}{14\!\cdots\!23}a^{15}+\frac{29\!\cdots\!32}{14\!\cdots\!23}a^{14}-\frac{22\!\cdots\!02}{14\!\cdots\!23}a^{13}-\frac{53\!\cdots\!38}{14\!\cdots\!23}a^{12}+\frac{50\!\cdots\!84}{14\!\cdots\!23}a^{11}-\frac{52\!\cdots\!52}{11\!\cdots\!71}a^{10}-\frac{60\!\cdots\!32}{14\!\cdots\!23}a^{9}+\frac{60\!\cdots\!44}{14\!\cdots\!23}a^{8}-\frac{32\!\cdots\!63}{14\!\cdots\!23}a^{7}-\frac{28\!\cdots\!36}{14\!\cdots\!23}a^{6}+\frac{42\!\cdots\!73}{14\!\cdots\!23}a^{5}-\frac{85\!\cdots\!54}{14\!\cdots\!23}a^{4}-\frac{72\!\cdots\!64}{14\!\cdots\!23}a^{3}+\frac{63\!\cdots\!01}{14\!\cdots\!23}a^{2}+\frac{54\!\cdots\!72}{14\!\cdots\!23}a-\frac{59\!\cdots\!10}{23\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $13$

Class group and class number

$C_{41}$, which has order $41$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{60\!\cdots\!32}{14\!\cdots\!23}a^{19}+\frac{10\!\cdots\!60}{14\!\cdots\!23}a^{18}+\frac{95\!\cdots\!05}{14\!\cdots\!23}a^{17}+\frac{24\!\cdots\!37}{14\!\cdots\!23}a^{16}+\frac{45\!\cdots\!89}{14\!\cdots\!23}a^{15}+\frac{56\!\cdots\!47}{14\!\cdots\!23}a^{14}+\frac{30\!\cdots\!63}{14\!\cdots\!23}a^{13}+\frac{60\!\cdots\!40}{14\!\cdots\!23}a^{12}-\frac{21\!\cdots\!46}{14\!\cdots\!23}a^{11}+\frac{11\!\cdots\!05}{11\!\cdots\!71}a^{10}+\frac{31\!\cdots\!05}{14\!\cdots\!23}a^{9}-\frac{37\!\cdots\!24}{14\!\cdots\!23}a^{8}+\frac{26\!\cdots\!24}{14\!\cdots\!23}a^{7}+\frac{66\!\cdots\!21}{14\!\cdots\!23}a^{6}-\frac{15\!\cdots\!75}{14\!\cdots\!23}a^{5}-\frac{10\!\cdots\!57}{14\!\cdots\!23}a^{4}+\frac{22\!\cdots\!49}{14\!\cdots\!23}a^{3}-\frac{11\!\cdots\!04}{14\!\cdots\!23}a^{2}+\frac{50\!\cdots\!73}{14\!\cdots\!23}a+\frac{49\!\cdots\!23}{23\!\cdots\!93}$, $\frac{49\!\cdots\!62}{14\!\cdots\!23}a^{19}-\frac{45\!\cdots\!57}{14\!\cdots\!23}a^{18}+\frac{14\!\cdots\!47}{14\!\cdots\!23}a^{17}+\frac{17\!\cdots\!52}{14\!\cdots\!23}a^{16}-\frac{11\!\cdots\!79}{14\!\cdots\!23}a^{15}+\frac{42\!\cdots\!48}{14\!\cdots\!23}a^{14}+\frac{19\!\cdots\!68}{14\!\cdots\!23}a^{13}-\frac{91\!\cdots\!57}{14\!\cdots\!23}a^{12}+\frac{39\!\cdots\!26}{14\!\cdots\!23}a^{11}+\frac{60\!\cdots\!43}{11\!\cdots\!71}a^{10}-\frac{11\!\cdots\!52}{14\!\cdots\!23}a^{9}+\frac{11\!\cdots\!49}{14\!\cdots\!23}a^{8}+\frac{13\!\cdots\!48}{14\!\cdots\!23}a^{7}+\frac{12\!\cdots\!39}{14\!\cdots\!23}a^{6}+\frac{63\!\cdots\!71}{14\!\cdots\!23}a^{5}+\frac{62\!\cdots\!58}{14\!\cdots\!23}a^{4}-\frac{70\!\cdots\!27}{14\!\cdots\!23}a^{3}+\frac{57\!\cdots\!08}{14\!\cdots\!23}a^{2}-\frac{19\!\cdots\!60}{14\!\cdots\!23}a+\frac{45\!\cdots\!31}{23\!\cdots\!93}$, $\frac{35\!\cdots\!50}{14\!\cdots\!23}a^{19}+\frac{13\!\cdots\!74}{14\!\cdots\!23}a^{18}-\frac{15\!\cdots\!35}{14\!\cdots\!23}a^{17}+\frac{15\!\cdots\!57}{14\!\cdots\!23}a^{16}+\frac{52\!\cdots\!97}{14\!\cdots\!23}a^{15}-\frac{51\!\cdots\!31}{14\!\cdots\!23}a^{14}+\frac{21\!\cdots\!03}{14\!\cdots\!23}a^{13}+\frac{61\!\cdots\!92}{14\!\cdots\!23}a^{12}-\frac{55\!\cdots\!32}{14\!\cdots\!23}a^{11}+\frac{85\!\cdots\!13}{11\!\cdots\!71}a^{10}+\frac{27\!\cdots\!53}{14\!\cdots\!23}a^{9}-\frac{21\!\cdots\!73}{14\!\cdots\!23}a^{8}+\frac{80\!\cdots\!68}{14\!\cdots\!23}a^{7}+\frac{54\!\cdots\!06}{14\!\cdots\!23}a^{6}-\frac{26\!\cdots\!48}{14\!\cdots\!23}a^{5}-\frac{50\!\cdots\!02}{14\!\cdots\!23}a^{4}+\frac{41\!\cdots\!79}{14\!\cdots\!23}a^{3}+\frac{24\!\cdots\!36}{14\!\cdots\!23}a^{2}+\frac{23\!\cdots\!63}{14\!\cdots\!23}a+\frac{17\!\cdots\!97}{23\!\cdots\!93}$, $\frac{79\!\cdots\!19}{14\!\cdots\!23}a^{19}+\frac{57\!\cdots\!47}{14\!\cdots\!23}a^{18}-\frac{53\!\cdots\!40}{14\!\cdots\!23}a^{17}+\frac{22\!\cdots\!60}{14\!\cdots\!23}a^{16}+\frac{19\!\cdots\!75}{14\!\cdots\!23}a^{15}-\frac{12\!\cdots\!12}{14\!\cdots\!23}a^{14}+\frac{60\!\cdots\!78}{14\!\cdots\!23}a^{13}+\frac{19\!\cdots\!83}{14\!\cdots\!23}a^{12}-\frac{55\!\cdots\!97}{14\!\cdots\!23}a^{11}+\frac{42\!\cdots\!26}{11\!\cdots\!71}a^{10}+\frac{57\!\cdots\!57}{14\!\cdots\!23}a^{9}+\frac{36\!\cdots\!12}{14\!\cdots\!23}a^{8}+\frac{15\!\cdots\!26}{14\!\cdots\!23}a^{7}+\frac{53\!\cdots\!86}{14\!\cdots\!23}a^{6}+\frac{12\!\cdots\!12}{14\!\cdots\!23}a^{5}+\frac{14\!\cdots\!26}{31\!\cdots\!09}a^{4}+\frac{25\!\cdots\!51}{14\!\cdots\!23}a^{3}-\frac{21\!\cdots\!10}{14\!\cdots\!23}a^{2}+\frac{31\!\cdots\!34}{14\!\cdots\!23}a-\frac{28\!\cdots\!14}{23\!\cdots\!93}$, $\frac{18\!\cdots\!85}{56\!\cdots\!39}a^{19}+\frac{28\!\cdots\!84}{56\!\cdots\!39}a^{18}-\frac{733348794514119}{56\!\cdots\!39}a^{17}+\frac{75\!\cdots\!75}{56\!\cdots\!39}a^{16}+\frac{11\!\cdots\!67}{56\!\cdots\!39}a^{15}-\frac{39\!\cdots\!54}{56\!\cdots\!39}a^{14}+\frac{95\!\cdots\!34}{56\!\cdots\!39}a^{13}+\frac{13\!\cdots\!26}{56\!\cdots\!39}a^{12}-\frac{60\!\cdots\!87}{56\!\cdots\!39}a^{11}+\frac{32\!\cdots\!68}{43\!\cdots\!03}a^{10}+\frac{63\!\cdots\!57}{56\!\cdots\!39}a^{9}-\frac{37\!\cdots\!54}{56\!\cdots\!39}a^{8}+\frac{25\!\cdots\!67}{56\!\cdots\!39}a^{7}+\frac{12\!\cdots\!88}{56\!\cdots\!39}a^{6}-\frac{65\!\cdots\!31}{56\!\cdots\!39}a^{5}-\frac{16\!\cdots\!37}{56\!\cdots\!39}a^{4}+\frac{10\!\cdots\!53}{56\!\cdots\!39}a^{3}+\frac{13\!\cdots\!75}{56\!\cdots\!39}a^{2}-\frac{52\!\cdots\!24}{56\!\cdots\!39}a-\frac{62\!\cdots\!68}{92\!\cdots\!49}$, $\frac{16\!\cdots\!67}{14\!\cdots\!23}a^{19}+\frac{29\!\cdots\!73}{14\!\cdots\!23}a^{18}-\frac{95\!\cdots\!99}{14\!\cdots\!23}a^{17}+\frac{63\!\cdots\!66}{14\!\cdots\!23}a^{16}+\frac{11\!\cdots\!17}{14\!\cdots\!23}a^{15}-\frac{36\!\cdots\!91}{14\!\cdots\!23}a^{14}+\frac{63\!\cdots\!85}{14\!\cdots\!23}a^{13}+\frac{15\!\cdots\!20}{14\!\cdots\!23}a^{12}-\frac{44\!\cdots\!45}{14\!\cdots\!23}a^{11}+\frac{68\!\cdots\!45}{11\!\cdots\!71}a^{10}+\frac{83\!\cdots\!83}{14\!\cdots\!23}a^{9}-\frac{20\!\cdots\!85}{14\!\cdots\!23}a^{8}-\frac{11\!\cdots\!98}{14\!\cdots\!23}a^{7}+\frac{22\!\cdots\!14}{14\!\cdots\!23}a^{6}-\frac{27\!\cdots\!62}{14\!\cdots\!23}a^{5}-\frac{44\!\cdots\!20}{14\!\cdots\!23}a^{4}+\frac{25\!\cdots\!56}{14\!\cdots\!23}a^{3}+\frac{39\!\cdots\!27}{14\!\cdots\!23}a^{2}-\frac{19\!\cdots\!17}{14\!\cdots\!23}a+\frac{13\!\cdots\!45}{23\!\cdots\!93}$, $\frac{13\!\cdots\!80}{14\!\cdots\!23}a^{19}+\frac{90\!\cdots\!50}{14\!\cdots\!23}a^{18}+\frac{33\!\cdots\!17}{31\!\cdots\!09}a^{17}+\frac{51\!\cdots\!99}{14\!\cdots\!23}a^{16}+\frac{43\!\cdots\!48}{14\!\cdots\!23}a^{15}-\frac{88\!\cdots\!85}{14\!\cdots\!23}a^{14}+\frac{61\!\cdots\!58}{14\!\cdots\!23}a^{13}+\frac{60\!\cdots\!01}{14\!\cdots\!23}a^{12}-\frac{19\!\cdots\!08}{14\!\cdots\!23}a^{11}+\frac{20\!\cdots\!51}{11\!\cdots\!71}a^{10}+\frac{33\!\cdots\!14}{14\!\cdots\!23}a^{9}-\frac{13\!\cdots\!01}{14\!\cdots\!23}a^{8}+\frac{32\!\cdots\!44}{14\!\cdots\!23}a^{7}+\frac{79\!\cdots\!52}{14\!\cdots\!23}a^{6}-\frac{29\!\cdots\!82}{14\!\cdots\!23}a^{5}-\frac{57\!\cdots\!54}{14\!\cdots\!23}a^{4}+\frac{43\!\cdots\!55}{14\!\cdots\!23}a^{3}+\frac{39\!\cdots\!07}{14\!\cdots\!23}a^{2}+\frac{29\!\cdots\!70}{14\!\cdots\!23}a+\frac{16\!\cdots\!96}{23\!\cdots\!93}$, $\frac{43\!\cdots\!11}{14\!\cdots\!23}a^{19}+\frac{15\!\cdots\!37}{14\!\cdots\!23}a^{18}-\frac{98\!\cdots\!90}{14\!\cdots\!23}a^{17}+\frac{19\!\cdots\!21}{14\!\cdots\!23}a^{16}+\frac{60\!\cdots\!87}{14\!\cdots\!23}a^{15}-\frac{31\!\cdots\!81}{14\!\cdots\!23}a^{14}+\frac{26\!\cdots\!49}{14\!\cdots\!23}a^{13}+\frac{71\!\cdots\!80}{14\!\cdots\!23}a^{12}-\frac{32\!\cdots\!79}{14\!\cdots\!23}a^{11}+\frac{11\!\cdots\!77}{11\!\cdots\!71}a^{10}+\frac{32\!\cdots\!87}{14\!\cdots\!23}a^{9}-\frac{11\!\cdots\!99}{14\!\cdots\!23}a^{8}+\frac{20\!\cdots\!85}{14\!\cdots\!23}a^{7}+\frac{62\!\cdots\!25}{14\!\cdots\!23}a^{6}-\frac{16\!\cdots\!56}{14\!\cdots\!23}a^{5}-\frac{29\!\cdots\!44}{14\!\cdots\!23}a^{4}+\frac{34\!\cdots\!19}{14\!\cdots\!23}a^{3}-\frac{13\!\cdots\!40}{14\!\cdots\!23}a^{2}+\frac{49\!\cdots\!17}{14\!\cdots\!23}a+\frac{76\!\cdots\!21}{23\!\cdots\!93}$, $\frac{43\!\cdots\!05}{14\!\cdots\!23}a^{19}+\frac{46\!\cdots\!23}{14\!\cdots\!23}a^{18}-\frac{35\!\cdots\!80}{14\!\cdots\!23}a^{17}+\frac{25\!\cdots\!19}{14\!\cdots\!23}a^{16}+\frac{16\!\cdots\!86}{14\!\cdots\!23}a^{15}-\frac{10\!\cdots\!38}{14\!\cdots\!23}a^{14}+\frac{41\!\cdots\!97}{14\!\cdots\!23}a^{13}+\frac{18\!\cdots\!58}{14\!\cdots\!23}a^{12}-\frac{91\!\cdots\!77}{14\!\cdots\!23}a^{11}+\frac{19\!\cdots\!26}{11\!\cdots\!71}a^{10}+\frac{77\!\cdots\!07}{14\!\cdots\!23}a^{9}-\frac{25\!\cdots\!88}{14\!\cdots\!23}a^{8}+\frac{38\!\cdots\!81}{14\!\cdots\!23}a^{7}+\frac{12\!\cdots\!31}{14\!\cdots\!23}a^{6}-\frac{28\!\cdots\!82}{14\!\cdots\!23}a^{5}-\frac{57\!\cdots\!45}{14\!\cdots\!23}a^{4}+\frac{79\!\cdots\!26}{14\!\cdots\!23}a^{3}-\frac{21\!\cdots\!83}{14\!\cdots\!23}a^{2}+\frac{14\!\cdots\!59}{14\!\cdots\!23}a+\frac{18\!\cdots\!31}{23\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 36549838.4715 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 36549838.4715 \cdot 41}{2\cdot\sqrt{8341936223273428359616333847680741}}\cr\approx \mathstrut & 0.786691710589 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 2*x^18 + 36*x^17 - 29*x^16 + 51*x^15 + 413*x^14 - 267*x^13 + 414*x^12 + 1778*x^11 - 745*x^10 + 691*x^9 + 3278*x^8 - 541*x^7 - 1330*x^6 + 1820*x^5 - 261*x^4 - 439*x^3 + 2983*x^2 - 522*x + 611)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - x^19 + 2*x^18 + 36*x^17 - 29*x^16 + 51*x^15 + 413*x^14 - 267*x^13 + 414*x^12 + 1778*x^11 - 745*x^10 + 691*x^9 + 3278*x^8 - 541*x^7 - 1330*x^6 + 1820*x^5 - 261*x^4 - 439*x^3 + 2983*x^2 - 522*x + 611, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - x^19 + 2*x^18 + 36*x^17 - 29*x^16 + 51*x^15 + 413*x^14 - 267*x^13 + 414*x^12 + 1778*x^11 - 745*x^10 + 691*x^9 + 3278*x^8 - 541*x^7 - 1330*x^6 + 1820*x^5 - 261*x^4 - 439*x^3 + 2983*x^2 - 522*x + 611);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - x^19 + 2*x^18 + 36*x^17 - 29*x^16 + 51*x^15 + 413*x^14 - 267*x^13 + 414*x^12 + 1778*x^11 - 745*x^10 + 691*x^9 + 3278*x^8 - 541*x^7 - 1330*x^6 + 1820*x^5 - 261*x^4 - 439*x^3 + 2983*x^2 - 522*x + 611);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{20}$ (as 20T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{61}) \), 4.0.226981.1, 5.5.13845841.1, 10.10.11694146092834141.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20$ ${\href{/padicField/3.10.0.1}{10} }^{2}$ ${\href{/padicField/5.10.0.1}{10} }^{2}$ $20$ ${\href{/padicField/11.4.0.1}{4} }^{5}$ ${\href{/padicField/13.1.0.1}{1} }^{20}$ $20$ ${\href{/padicField/19.10.0.1}{10} }^{2}$ $20$ ${\href{/padicField/29.4.0.1}{4} }^{5}$ $20$ $20$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ $20$ ${\href{/padicField/47.1.0.1}{1} }^{20}$ $20$ $20$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(61\) Copy content Toggle raw display 61.20.19.6$x^{20} + 61$$20$$1$$19$20T1$[\ ]_{20}$