Normalized defining polynomial
\( x^{20} - 50 x^{17} + 45 x^{16} - 1954 x^{15} + 1146 x^{14} - 8728 x^{13} + 35720 x^{12} + 63452 x^{11} + 399454 x^{10} + 1381924 x^{9} + 4593593 x^{8} + 10877422 x^{7} + 18625392 x^{6} + 18362518 x^{5} + 8907493 x^{4} + 1360618 x^{3} + 2035604 x^{2} + 3955342 x + 2849617 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(830861029216363101082988400989215653888=2^{30}\cdot 3^{10}\cdot 7^{8}\cdot 11^{8}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{719} a^{18} - \frac{90}{719} a^{17} + \frac{159}{719} a^{16} + \frac{24}{719} a^{15} - \frac{13}{719} a^{14} - \frac{114}{719} a^{13} + \frac{318}{719} a^{12} + \frac{93}{719} a^{11} - \frac{82}{719} a^{10} + \frac{270}{719} a^{9} + \frac{303}{719} a^{8} + \frac{46}{719} a^{7} - \frac{273}{719} a^{6} - \frac{239}{719} a^{5} - \frac{255}{719} a^{4} - \frac{342}{719} a^{3} - \frac{84}{719} a^{2} + \frac{80}{719} a - \frac{83}{719}$, $\frac{1}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{19} + \frac{13044653818394974594982444521160893763905583880796250367457011731211818}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{18} - \frac{14267572014665415498251257334602582729007395091420944110239303154750172847}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{17} + \frac{1189123826745729353685169994848110861391394577477236520023242520204757119}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{16} - \frac{2657462434805949403877947932632513702146733588829979344017267879370888625}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{15} - \frac{15125866478474141173977355103496332155080521044834230396548652333549464308}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{14} + \frac{15064191185642299832415918151626527494355691472457534476630724207845898451}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{13} + \frac{5074118807140869166082599513425362312977954099458762470726321100396186}{13389612397499996358600993228504895550218256392181671184704447116864437} a^{12} - \frac{12555255016038256798349789257356772198431006408068914015465833585451296306}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{11} + \frac{5136215539299109179573031864227564790522933052205516501924894117485023311}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{10} + \frac{1500626389453700046175524321229630076175939382577538475129587713488755580}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{9} - \frac{9371546578598218197008405053033537256906318570725304769597931289849812722}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{8} - \frac{15319834434621982814118567213007399982829825654216433716286423519489038494}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{7} + \frac{513397154398957218383591076371989189646621988007482181454602674832852470}{2557415967922499304492789706644435050091686970906699196278549399321107467} a^{6} - \frac{7526087123438979159842530389216767265907990383436824708909276080389664507}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{5} - \frac{3630736461616695906296605677106452270490705685321657949164480130477516848}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{4} + \frac{9056195529396246575904265605140236692781037946969488139424203382627161905}{33246407582992490958406266186377655651191930621787089551621142191174397071} a^{3} - \frac{875144043871515458935888075751871557216713873560413196177106069351274759}{2557415967922499304492789706644435050091686970906699196278549399321107467} a^{2} - \frac{15211752829419038781423022657707564825024825440104923330185062925719075774}{33246407582992490958406266186377655651191930621787089551621142191174397071} a + \frac{4599888301689809176604437949512558542327502008775278139981018828810286769}{33246407582992490958406266186377655651191930621787089551621142191174397071}$
Class group and class number
$C_{1102}$, which has order $1102$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161877573.325 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.0.7488.1, 10.10.249828821987576832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | R | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.8.2 | $x^{10} + 143 x^{5} + 5929$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |