Normalized defining polynomial
\( x^{20} + 615 x^{18} + 145755 x^{16} + 16992450 x^{14} + 1043541225 x^{12} + 34317553500 x^{10} + 606522532500 x^{8} + 5504713171875 x^{6} + 21957374750625 x^{4} + 22379201943750 x^{2} + 5515361128125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8303397007448741046809295126072534048000000000000000=2^{20}\cdot 3^{10}\cdot 5^{15}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $394.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2460=2^{2}\cdot 3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2460}(1,·)$, $\chi_{2460}(323,·)$, $\chi_{2460}(1861,·)$, $\chi_{2460}(961,·)$, $\chi_{2460}(2123,·)$, $\chi_{2460}(143,·)$, $\chi_{2460}(2387,·)$, $\chi_{2460}(409,·)$, $\chi_{2460}(1727,·)$, $\chi_{2460}(863,·)$, $\chi_{2460}(1187,·)$, $\chi_{2460}(1607,·)$, $\chi_{2460}(1009,·)$, $\chi_{2460}(1907,·)$, $\chi_{2460}(1909,·)$, $\chi_{2460}(1849,·)$, $\chi_{2460}(443,·)$, $\chi_{2460}(769,·)$, $\chi_{2460}(1021,·)$, $\chi_{2460}(2101,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{135} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{135} a^{5} + \frac{1}{3} a$, $\frac{1}{1215} a^{6} + \frac{1}{405} a^{4} - \frac{4}{27} a^{2}$, $\frac{1}{1215} a^{7} + \frac{1}{405} a^{5} - \frac{1}{27} a^{3} - \frac{1}{3} a$, $\frac{1}{18225} a^{8} - \frac{4}{27} a^{2}$, $\frac{1}{164025} a^{9} + \frac{1}{3645} a^{7} - \frac{4}{1215} a^{5} - \frac{4}{243} a^{3} + \frac{1}{9} a$, $\frac{1}{492075} a^{10} - \frac{1}{54675} a^{8} - \frac{1}{3645} a^{6} - \frac{11}{3645} a^{4} - \frac{4}{27} a^{2}$, $\frac{1}{492075} a^{11} - \frac{1}{3645} a^{7} - \frac{2}{3645} a^{5} - \frac{4}{81} a^{3}$, $\frac{1}{22143375} a^{12} + \frac{1}{1476225} a^{10} + \frac{4}{164025} a^{8} - \frac{7}{32805} a^{6} + \frac{22}{10935} a^{4} + \frac{13}{81} a^{2}$, $\frac{1}{22143375} a^{13} + \frac{1}{1476225} a^{11} + \frac{11}{32805} a^{7} - \frac{23}{10935} a^{5} + \frac{10}{243} a^{3} + \frac{2}{9} a$, $\frac{1}{597871125} a^{14} + \frac{4}{199290375} a^{12} - \frac{7}{13286025} a^{10} - \frac{101}{4428675} a^{8} - \frac{79}{295245} a^{6} - \frac{211}{98415} a^{4} - \frac{100}{729} a^{2} + \frac{1}{3}$, $\frac{1}{597871125} a^{15} + \frac{4}{199290375} a^{13} - \frac{7}{13286025} a^{11} + \frac{7}{4428675} a^{9} + \frac{2}{295245} a^{7} - \frac{292}{98415} a^{5} - \frac{40}{729} a^{3} + \frac{4}{9} a$, $\frac{1}{13479004513125} a^{16} + \frac{134}{299533433625} a^{14} - \frac{731}{99844477875} a^{12} - \frac{269}{19968895575} a^{10} - \frac{54649}{2218766175} a^{8} + \frac{35267}{147917745} a^{6} + \frac{160541}{147917745} a^{4} + \frac{122339}{1095687} a^{2} + \frac{85}{4509}$, $\frac{1}{13479004513125} a^{17} + \frac{134}{299533433625} a^{15} - \frac{731}{99844477875} a^{13} - \frac{269}{19968895575} a^{11} - \frac{541}{2218766175} a^{9} - \frac{9179}{29583549} a^{7} - \frac{326431}{147917745} a^{5} + \frac{9614}{1095687} a^{3} + \frac{586}{4509} a$, $\frac{1}{1088837313884352241875} a^{18} + \frac{2192383}{72589154258956816125} a^{16} + \frac{1717183661}{8065461584328535125} a^{14} - \frac{139763581036}{8065461584328535125} a^{12} + \frac{101351356712}{537697438955235675} a^{10} - \frac{1616456522299}{59744159883915075} a^{8} - \frac{4259176604683}{11948831976783015} a^{6} - \frac{4359551747933}{3982943992261005} a^{4} - \frac{1226118600896}{29503288831563} a^{2} + \frac{15561340019}{121412711241}$, $\frac{1}{1088837313884352241875} a^{19} + \frac{2192383}{72589154258956816125} a^{17} + \frac{1717183661}{8065461584328535125} a^{15} - \frac{139763581036}{8065461584328535125} a^{13} + \frac{101351356712}{537697438955235675} a^{11} - \frac{159503987407}{59744159883915075} a^{9} - \frac{981033401176}{11948831976783015} a^{7} - \frac{1527538990288}{796588798452201} a^{5} + \frac{1202135623924}{29503288831563} a^{3} + \frac{29051641268}{121412711241} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{510252}$, which has order $3134988288$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3541438824.6395073 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{205}) \), 4.0.1240578000.2, 5.5.2825761.1, 10.10.1023068544981128125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||