Normalized defining polynomial
\( x^{20} - 145 x^{18} + 11495 x^{16} - 198 x^{15} - 539050 x^{14} - 110880 x^{13} + 16919275 x^{12} + 13904880 x^{11} - 333632526 x^{10} - 626326800 x^{9} + 4830793285 x^{8} + 15845595150 x^{7} - 32642132485 x^{6} - 137024708502 x^{5} + 506495275550 x^{4} + 1619481226110 x^{3} + 3143847094100 x^{2} - 27446286638760 x + 70536147920701 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8280290523419410812039184570312500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{35}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $394.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3300=2^{2}\cdot 3\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3300}(1,·)$, $\chi_{3300}(2027,·)$, $\chi_{3300}(1607,·)$, $\chi_{3300}(587,·)$, $\chi_{3300}(467,·)$, $\chi_{3300}(2809,·)$, $\chi_{3300}(1369,·)$, $\chi_{3300}(2183,·)$, $\chi_{3300}(289,·)$, $\chi_{3300}(229,·)$, $\chi_{3300}(1703,·)$, $\chi_{3300}(647,·)$, $\chi_{3300}(2941,·)$, $\chi_{3300}(2963,·)$, $\chi_{3300}(181,·)$, $\chi_{3300}(2423,·)$, $\chi_{3300}(1849,·)$, $\chi_{3300}(1343,·)$, $\chi_{3300}(1021,·)$, $\chi_{3300}(3061,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{10} + \frac{2}{5} a^{7} - \frac{1}{3} a^{6} - \frac{2}{5} a^{5} - \frac{1}{15} a^{2} + \frac{1}{15}$, $\frac{1}{75} a^{13} - \frac{1}{75} a^{12} + \frac{2}{75} a^{11} + \frac{7}{75} a^{10} + \frac{1}{5} a^{9} + \frac{7}{25} a^{8} + \frac{19}{75} a^{7} + \frac{2}{75} a^{6} + \frac{9}{25} a^{5} - \frac{2}{5} a^{4} - \frac{16}{75} a^{3} - \frac{14}{75} a^{2} - \frac{2}{75} a - \frac{22}{75}$, $\frac{1}{75} a^{14} + \frac{1}{75} a^{12} - \frac{2}{25} a^{11} + \frac{7}{75} a^{10} + \frac{12}{25} a^{9} - \frac{7}{15} a^{8} + \frac{7}{25} a^{7} + \frac{14}{75} a^{6} - \frac{6}{25} a^{5} + \frac{29}{75} a^{4} - \frac{2}{5} a^{3} - \frac{16}{75} a^{2} - \frac{3}{25} a - \frac{7}{75}$, $\frac{1}{75} a^{15} + \frac{1}{15} a^{11} - \frac{2}{25} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{2}{5} a^{6} + \frac{17}{75} a^{5} - \frac{1}{15} a - \frac{6}{25}$, $\frac{1}{150975} a^{16} + \frac{4}{1525} a^{15} + \frac{677}{150975} a^{14} + \frac{23}{4575} a^{13} - \frac{1937}{150975} a^{12} + \frac{21}{305} a^{11} + \frac{69}{1525} a^{10} - \frac{582}{1525} a^{9} - \frac{15527}{50325} a^{8} + \frac{326}{4575} a^{7} + \frac{18811}{50325} a^{6} - \frac{1982}{4575} a^{5} - \frac{44987}{150975} a^{4} + \frac{1637}{4575} a^{3} + \frac{28922}{150975} a^{2} + \frac{499}{1525} a - \frac{5089}{30195}$, $\frac{1}{150975} a^{17} + \frac{35}{6039} a^{15} + \frac{4}{1525} a^{14} - \frac{551}{150975} a^{13} - \frac{16}{1525} a^{12} - \frac{92}{1525} a^{11} + \frac{7}{915} a^{10} - \frac{17078}{50325} a^{9} + \frac{281}{1525} a^{8} - \frac{10262}{50325} a^{7} - \frac{736}{4575} a^{6} - \frac{5473}{30195} a^{5} - \frac{992}{4575} a^{4} + \frac{44861}{150975} a^{3} + \frac{8}{305} a^{2} + \frac{74743}{150975} a + \frac{434}{915}$, $\frac{1}{150975} a^{18} + \frac{4}{4575} a^{15} + \frac{101}{16775} a^{14} + \frac{6}{1525} a^{13} + \frac{2899}{150975} a^{12} + \frac{84}{1525} a^{11} + \frac{64}{16775} a^{10} + \frac{1153}{4575} a^{9} - \frac{11216}{50325} a^{8} + \frac{421}{1525} a^{7} + \frac{57196}{150975} a^{6} - \frac{911}{4575} a^{5} - \frac{5146}{16775} a^{4} + \frac{1489}{4575} a^{3} - \frac{3026}{16775} a^{2} - \frac{199}{1525} a + \frac{44881}{150975}$, $\frac{1}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{19} - \frac{5334083995888968460702980180060826731808944246523840187332930326071535919246538092740876757}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{18} + \frac{35068750404687300793498734762372125324545323150187530244331830917206124557486165226050636411}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{17} + \frac{36820353386262058871317120917426140337099776561408111102926437624243466358093596519078673803}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{16} + \frac{45102004941194690060601443074444042728812724835481943018588953639214053721686529313639681731571}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{15} - \frac{61434660952402226702759188709237559173644117725258141820921536982616202765048641380053265944199}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{14} - \frac{1046357030655117272278937508678793045828650717148398258021051884072995387154516481089670903902}{256241632650078848805755793583849904020419442225238285982084718358110335670932931391560220957755} a^{13} + \frac{101053475825442879043828113079955629734671632786940107359709157069988455758169720449473926632531}{3843624489751182732086336903757748560306291633378574289731270775371655035063993970873403314366325} a^{12} + \frac{223409107306852745898758398327599836771735505218711243862190153631082032186918054000549181705317}{3843624489751182732086336903757748560306291633378574289731270775371655035063993970873403314366325} a^{11} + \frac{225470164922319069477043333323351313510350516354485757332498483026042901532962908226221859558408}{3843624489751182732086336903757748560306291633378574289731270775371655035063993970873403314366325} a^{10} + \frac{1212449501943050722842265810983169990533729548210802699123332903308948009219699506073054553172688}{3843624489751182732086336903757748560306291633378574289731270775371655035063993970873403314366325} a^{9} - \frac{244984306669338637664092992968960666304261446454675302380471796772339966001701769205780144532104}{1281208163250394244028778967919249520102097211126191429910423591790551678354664656957801104788775} a^{8} - \frac{50547011404918087584598862620619228927031985826809340002619581017310924095307427878717240700089}{1048261224477595290569000973752113243719897718194156624472164756919542282290180173874564540281725} a^{7} + \frac{85220345432833567484287573584301059787106336199355837983203444576740687349045379687846891393272}{209652244895519058113800194750422648743979543638831324894432951383908456458036034774912908056345} a^{6} - \frac{500440284775765663840706642943610580694354400652351562336008601174691778345730788713068592372928}{1048261224477595290569000973752113243719897718194156624472164756919542282290180173874564540281725} a^{5} - \frac{34424415957960639255012148496460323880872799598479999025480973294459863648858442753101188991106}{209652244895519058113800194750422648743979543638831324894432951383908456458036034774912908056345} a^{4} - \frac{4411312034260713595790150330121164369425972347612529891456582457602177552051916704800916079284472}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{3} + \frac{5446642864775913130769766549364102642523621694690886242462992107444729266428001420256164356201018}{11530873469253548196259010711273245680918874900135722869193812326114965105191981912620209943098975} a^{2} - \frac{752156749592157268185936997119048707467417665530106047579880652863412674906374784845888901346376}{3843624489751182732086336903757748560306291633378574289731270775371655035063993970873403314366325} a + \frac{245122767869658179996621921685343987574099658052796273868767024867742474791711386634639595333}{2368222113216994905783325264176061959523285048292405600573795918281980921173132452787063040275}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{10}\times C_{1304210}$, which has order $1043368000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 864758391.9354854 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.18000.1, 5.5.5719140625.2, 10.10.163542847442626953125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |