Normalized defining polynomial
\( x^{20} - 145 x^{18} + 11495 x^{16} - 2552 x^{15} - 539050 x^{14} + 506880 x^{13} + 16919275 x^{12} - 38258880 x^{11} - 330084201 x^{10} + 1584756800 x^{9} + 3849422785 x^{8} - 33027911400 x^{7} + 44066619140 x^{6} + 422425247552 x^{5} - 1461670305700 x^{4} - 337208187360 x^{3} + 18744110591600 x^{2} - 48578566298240 x + 66790722351376 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8280290523419410812039184570312500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{35}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $394.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3300=2^{2}\cdot 3\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3300}(1,·)$, $\chi_{3300}(323,·)$, $\chi_{3300}(2821,·)$, $\chi_{3300}(961,·)$, $\chi_{3300}(1609,·)$, $\chi_{3300}(203,·)$, $\chi_{3300}(1741,·)$, $\chi_{3300}(2447,·)$, $\chi_{3300}(1681,·)$, $\chi_{3300}(3227,·)$, $\chi_{3300}(1763,·)$, $\chi_{3300}(1489,·)$, $\chi_{3300}(2687,·)$, $\chi_{3300}(1607,·)$, $\chi_{3300}(2029,·)$, $\chi_{3300}(1967,·)$, $\chi_{3300}(2869,·)$, $\chi_{3300}(1849,·)$, $\chi_{3300}(1343,·)$, $\chi_{3300}(383,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{10} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5}$, $\frac{1}{10} a^{11} + \frac{2}{5} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{2}{5} a^{7} + \frac{1}{8} a^{6} - \frac{1}{10} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{3}{20} a^{2} - \frac{1}{2} a - \frac{1}{10}$, $\frac{1}{3800} a^{13} + \frac{11}{3800} a^{12} - \frac{73}{3800} a^{11} - \frac{157}{3800} a^{10} + \frac{6}{95} a^{9} + \frac{427}{1900} a^{8} - \frac{1091}{3800} a^{7} - \frac{677}{3800} a^{6} + \frac{727}{3800} a^{5} - \frac{369}{760} a^{4} - \frac{102}{475} a^{3} + \frac{927}{1900} a^{2} + \frac{231}{475} a - \frac{257}{950}$, $\frac{1}{3800} a^{14} - \frac{1}{950} a^{12} - \frac{3}{100} a^{11} - \frac{123}{3800} a^{10} + \frac{3}{100} a^{9} + \frac{183}{760} a^{8} + \frac{9}{50} a^{7} - \frac{379}{950} a^{6} + \frac{21}{100} a^{5} + \frac{1429}{3800} a^{4} + \frac{7}{20} a^{3} + \frac{607}{1900} a^{2} - \frac{21}{50} a - \frac{213}{950}$, $\frac{1}{7600} a^{15} - \frac{7}{760} a^{12} + \frac{69}{1520} a^{11} - \frac{67}{3800} a^{10} - \frac{1}{304} a^{9} + \frac{3}{76} a^{8} + \frac{43}{190} a^{7} - \frac{267}{760} a^{6} - \frac{1743}{7600} a^{5} - \frac{7}{152} a^{4} + \frac{73}{152} a^{3} - \frac{89}{380} a^{2} + \frac{99}{380} a - \frac{162}{475}$, $\frac{1}{2424400} a^{16} + \frac{69}{1212200} a^{14} - \frac{3}{55100} a^{13} - \frac{28249}{2424400} a^{12} - \frac{473}{11020} a^{11} + \frac{1761}{44080} a^{10} - \frac{2973}{13775} a^{9} + \frac{189521}{1212200} a^{8} - \frac{3529}{55100} a^{7} + \frac{280943}{2424400} a^{6} + \frac{3569}{11020} a^{5} + \frac{98721}{1212200} a^{4} - \frac{6323}{13775} a^{3} - \frac{160019}{606100} a^{2} + \frac{6633}{27550} a + \frac{497}{1045}$, $\frac{1}{482455600} a^{17} - \frac{3}{25392400} a^{16} - \frac{2283}{48245560} a^{15} + \frac{3368}{30153475} a^{14} - \frac{15621}{482455600} a^{13} + \frac{2680053}{482455600} a^{12} + \frac{108511}{2308400} a^{11} + \frac{2183333}{43859600} a^{10} - \frac{38050329}{241227800} a^{9} - \frac{705091}{120613900} a^{8} - \frac{938243}{5078480} a^{7} + \frac{4673293}{19298224} a^{6} - \frac{80690999}{241227800} a^{5} + \frac{25945693}{120613900} a^{4} + \frac{20320497}{60306950} a^{3} - \frac{14372929}{30153475} a^{2} - \frac{3190392}{30153475} a + \frac{898011}{2079550}$, $\frac{1}{9166656400} a^{18} + \frac{1}{1833331280} a^{17} - \frac{1091}{9166656400} a^{16} + \frac{479377}{9166656400} a^{15} - \frac{16949}{366666256} a^{14} + \frac{533869}{9166656400} a^{13} - \frac{5131991}{4583328200} a^{12} + \frac{28497}{41666620} a^{11} + \frac{341870071}{9166656400} a^{10} + \frac{79405759}{1833331280} a^{9} - \frac{1544415781}{9166656400} a^{8} - \frac{252752243}{9166656400} a^{7} - \frac{1329341683}{9166656400} a^{6} + \frac{823882447}{1833331280} a^{5} - \frac{14302669}{48245560} a^{4} + \frac{81818821}{916665640} a^{3} - \frac{331250107}{2291664100} a^{2} - \frac{10692481}{2291664100} a - \frac{19204829}{39511450}$, $\frac{1}{2350445519217726802982618734989806969784383600005294123828777519715007999270399200} a^{19} + \frac{27640546070164345453424113658327002188401583019953746672309540223935583}{1175222759608863401491309367494903484892191800002647061914388759857503999635199600} a^{18} + \frac{2065846994375128371512386769234056035028945895317343103303925700403571707}{2350445519217726802982618734989806969784383600005294123828777519715007999270399200} a^{17} + \frac{8138657859686652577325681079885486239235265541742671976598109342825970551}{1175222759608863401491309367494903484892191800002647061914388759857503999635199600} a^{16} - \frac{51151918088421887175361682377508215919720096497734281950862003186537026385341}{2350445519217726802982618734989806969784383600005294123828777519715007999270399200} a^{15} - \frac{92862032269515996903831886279048567583684253451510988990795078645602019073611}{1175222759608863401491309367494903484892191800002647061914388759857503999635199600} a^{14} + \frac{216251877007901754592983870376121316235566504780534446948486893903029404893}{2474153178123922950508019721041902073457245894742414867188186862857903157126736} a^{13} - \frac{1613941641842049689045321121374519226303387390450355021093821590396780855797939}{293805689902215850372827341873725871223047950000661765478597189964375999908799900} a^{12} - \frac{55344075970319737803367998892690454374213047014093064588506787917805502276621973}{2350445519217726802982618734989806969784383600005294123828777519715007999270399200} a^{11} + \frac{1397100239001213845754358071989810878185388063792874883143444095616111470186771}{47008910384354536059652374699796139395687672000105882476575550394300159985407984} a^{10} + \frac{58110378934878881632204399872694571844330675318884144322447798552613301931449147}{470089103843545360596523746997961393956876720001058824765755503943001599854079840} a^{9} - \frac{183608403113301790688052645520524614626990663130329979661954824888918483994334991}{1175222759608863401491309367494903484892191800002647061914388759857503999635199600} a^{8} + \frac{370604640865541804847723127317459435897962002893082992857167175179507501053248113}{2350445519217726802982618734989806969784383600005294123828777519715007999270399200} a^{7} - \frac{28601891360618358360277265570473497564767537205649568241508999636670927013893153}{106838432691714854681028124317718498626562890909331551083126250896136727239563600} a^{6} - \frac{22717202662811767684481030301521240593553953638217904089517565584142298677523661}{293805689902215850372827341873725871223047950000661765478597189964375999908799900} a^{5} - \frac{2655702306055151471566636581614065514871443470130540755528479088286481617378073}{26709608172928713670257031079429624656640722727332887770781562724034181809890900} a^{4} + \frac{6545092127610330651825433088549526823706901468140062200469766910277869216679249}{146902844951107925186413670936862935611523975000330882739298594982187999954399950} a^{3} - \frac{20265988572649170490786372315206070648703533584223166832325697871707728400182921}{58761137980443170074565468374745174244609590000132353095719437992875199981759980} a^{2} + \frac{6457554942461759283672609326364727002118843832877291742793502160745794652605197}{293805689902215850372827341873725871223047950000661765478597189964375999908799900} a - \frac{1127321994077075976286835921558188397534851807134201875695934391185930226781508}{2532807671570826296317477085118326476060758189660877288608596465210137930248275}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}\times C_{10}\times C_{110}\times C_{46310}$, which has order $2037640000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4235385044.5954027 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.18000.1, 5.5.5719140625.4, 10.10.163542847442626953125.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |