Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} + 4 x^{17} + 19 x^{16} - 44 x^{15} + 32 x^{14} - 44 x^{13} + 29 x^{12} - 24 x^{11} + 48 x^{10} - 24 x^{9} + 29 x^{8} - 44 x^{7} + 32 x^{6} - 44 x^{5} + 19 x^{4} + 4 x^{3} + 8 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8241956748638414149261459456=2^{24}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{6} + \frac{3}{8} a^{4} + \frac{3}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{7} + \frac{3}{8} a^{5} + \frac{3}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{780776} a^{18} - \frac{20645}{390388} a^{17} - \frac{6963}{195194} a^{16} + \frac{6389}{97597} a^{15} - \frac{4678}{97597} a^{14} + \frac{37799}{390388} a^{13} - \frac{47109}{780776} a^{12} - \frac{11621}{195194} a^{11} + \frac{19077}{390388} a^{10} + \frac{8999}{195194} a^{9} + \frac{19077}{390388} a^{8} + \frac{42988}{97597} a^{7} + \frac{148085}{780776} a^{6} + \frac{37799}{390388} a^{5} - \frac{116309}{390388} a^{4} - \frac{84819}{195194} a^{3} - \frac{111523}{390388} a^{2} + \frac{174549}{390388} a + \frac{195195}{780776}$, $\frac{1}{11711640} a^{19} - \frac{1}{2342328} a^{18} - \frac{320941}{5855820} a^{17} - \frac{139613}{3903880} a^{16} + \frac{329969}{5855820} a^{15} - \frac{167239}{3903880} a^{14} - \frac{721321}{11711640} a^{13} + \frac{114863}{2927910} a^{12} + \frac{340927}{1951940} a^{11} - \frac{105384}{487985} a^{10} + \frac{117779}{1951940} a^{9} + \frac{117767}{1951940} a^{8} + \frac{3326657}{11711640} a^{7} + \frac{2045489}{11711640} a^{6} - \frac{449691}{975970} a^{5} - \frac{3649307}{11711640} a^{4} + \frac{101094}{487985} a^{3} + \frac{211049}{688920} a^{2} + \frac{501815}{2342328} a + \frac{2606963}{5855820}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2354809}{5855820} a^{19} - \frac{3437489}{2342328} a^{18} + \frac{31517459}{11711640} a^{17} + \frac{5163543}{1951940} a^{16} + \frac{97394669}{11711640} a^{15} - \frac{7098359}{487985} a^{14} + \frac{92885527}{11711640} a^{13} - \frac{155692199}{11711640} a^{12} + \frac{10258881}{1951940} a^{11} - \frac{12724633}{1951940} a^{10} + \frac{7507648}{487985} a^{9} - \frac{6927119}{1951940} a^{8} + \frac{25651099}{2927910} a^{7} - \frac{146866313}{11711640} a^{6} + \frac{30737183}{3903880} a^{5} - \frac{38849449}{2927910} a^{4} + \frac{4753611}{3903880} a^{3} + \frac{24601537}{5855820} a^{2} + \frac{6769069}{2342328} a - \frac{7956667}{11711640} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4265922.29823 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1280 |
| The 44 conjugacy class representatives for t20n196 |
| Character table for t20n196 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.2382032.1, 10.0.22696305796096.1, 10.6.45392611592192.1, 10.4.45392611592192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |