Normalized defining polynomial
\( x^{20} - x^{19} + 3 x^{18} + 6 x^{17} + 33 x^{16} + 34 x^{15} + 65 x^{14} + 69 x^{13} + 127 x^{12} + 132 x^{11} + 144 x^{10} + 143 x^{9} + 101 x^{8} + 141 x^{7} + 116 x^{6} - 32 x^{5} + 110 x^{4} - 20 x^{3} + 20 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(823067302269314181883621609=11^{18}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{16} - \frac{1}{3} a^{15} - \frac{4}{9} a^{14} + \frac{4}{9} a^{13} - \frac{2}{9} a^{12} - \frac{1}{3} a^{11} - \frac{1}{9} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{2}{9} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{2} + \frac{4}{9}$, $\frac{1}{621} a^{18} + \frac{11}{207} a^{17} + \frac{8}{621} a^{16} + \frac{56}{621} a^{15} - \frac{56}{207} a^{14} + \frac{80}{621} a^{13} - \frac{206}{621} a^{12} - \frac{40}{621} a^{11} - \frac{280}{621} a^{10} - \frac{35}{207} a^{9} + \frac{76}{621} a^{8} + \frac{53}{207} a^{7} + \frac{103}{621} a^{6} - \frac{80}{621} a^{5} - \frac{286}{621} a^{4} + \frac{116}{621} a^{3} - \frac{25}{621} a^{2} - \frac{32}{621} a + \frac{154}{621}$, $\frac{1}{98534508242933547} a^{19} + \frac{76218567797968}{98534508242933547} a^{18} + \frac{3403201604775863}{98534508242933547} a^{17} - \frac{130516148346665}{2291500191696129} a^{16} + \frac{26492564251396535}{98534508242933547} a^{15} + \frac{31358279332162802}{98534508242933547} a^{14} + \frac{2540694767321407}{10948278693659283} a^{13} + \frac{11013655113771452}{32844836080977849} a^{12} - \frac{5001907272142883}{98534508242933547} a^{11} - \frac{38711040571209409}{98534508242933547} a^{10} - \frac{16769795883076298}{98534508242933547} a^{9} + \frac{39297347127778861}{98534508242933547} a^{8} - \frac{820654432835378}{2291500191696129} a^{7} + \frac{16509570869982074}{98534508242933547} a^{6} - \frac{5857759310623187}{32844836080977849} a^{5} + \frac{42279823348683058}{98534508242933547} a^{4} + \frac{27483180390783496}{98534508242933547} a^{3} + \frac{7247361482236484}{32844836080977849} a^{2} + \frac{30019309881984896}{98534508242933547} a - \frac{10275860534242652}{98534508242933547}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35594.0921154 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T40):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.54232796893.1, 10.2.28689149556397.1, 10.2.113395848049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |