Normalized defining polynomial
\( x^{20} - 2 x^{19} + 49 x^{18} - 100 x^{17} + 1294 x^{16} - 2688 x^{15} + 21586 x^{14} - 45860 x^{13} + 259166 x^{12} - 564192 x^{11} + 2319998 x^{10} - 5184914 x^{9} + 16965405 x^{8} - 36359542 x^{7} + 100228517 x^{6} - 157947368 x^{5} + 445313172 x^{4} - 296136026 x^{3} + 992360396 x^{2} + 153275916 x + 1023598489 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(823003582791542802072855307752419885056=2^{30}\cdot 11^{18}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1144=2^{3}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1144}(1,·)$, $\chi_{1144}(1093,·)$, $\chi_{1144}(129,·)$, $\chi_{1144}(521,·)$, $\chi_{1144}(909,·)$, $\chi_{1144}(337,·)$, $\chi_{1144}(729,·)$, $\chi_{1144}(857,·)$, $\chi_{1144}(1117,·)$, $\chi_{1144}(545,·)$, $\chi_{1144}(805,·)$, $\chi_{1144}(233,·)$, $\chi_{1144}(157,·)$, $\chi_{1144}(625,·)$, $\chi_{1144}(573,·)$, $\chi_{1144}(285,·)$, $\chi_{1144}(885,·)$, $\chi_{1144}(313,·)$, $\chi_{1144}(701,·)$, $\chi_{1144}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2683} a^{12} + \frac{137}{2683} a^{11} + \frac{21}{2683} a^{10} + \frac{468}{2683} a^{9} + \frac{270}{2683} a^{8} - \frac{241}{2683} a^{7} + \frac{1151}{2683} a^{6} - \frac{908}{2683} a^{5} + \frac{199}{2683} a^{4} + \frac{983}{2683} a^{3} - \frac{813}{2683} a^{2} + \frac{940}{2683} a - \frac{1039}{2683}$, $\frac{1}{2683} a^{13} + \frac{33}{2683} a^{11} + \frac{274}{2683} a^{10} + \frac{546}{2683} a^{9} + \frac{331}{2683} a^{8} - \frac{711}{2683} a^{7} - \frac{298}{2683} a^{6} + \frac{1177}{2683} a^{5} + \frac{550}{2683} a^{4} - \frac{1334}{2683} a^{3} - \frac{365}{2683} a^{2} - \frac{1035}{2683} a + \frac{144}{2683}$, $\frac{1}{2683} a^{14} + \frac{1119}{2683} a^{11} - \frac{147}{2683} a^{10} + \frac{985}{2683} a^{9} + \frac{1111}{2683} a^{8} - \frac{394}{2683} a^{7} + \frac{756}{2683} a^{6} + \frac{1001}{2683} a^{5} + \frac{148}{2683} a^{4} - \frac{608}{2683} a^{3} - \frac{1036}{2683} a^{2} + \frac{1320}{2683} a - \frac{592}{2683}$, $\frac{1}{2683} a^{15} - \frac{519}{2683} a^{11} - \frac{1050}{2683} a^{10} + \frac{604}{2683} a^{9} + \frac{655}{2683} a^{8} - \frac{548}{2683} a^{7} + \frac{872}{2683} a^{6} - \frac{657}{2683} a^{5} - \frac{600}{2683} a^{4} - \frac{983}{2683} a^{3} - \frac{1153}{2683} a^{2} - \frac{716}{2683} a + \frac{902}{2683}$, $\frac{1}{61709} a^{16} + \frac{7}{61709} a^{14} + \frac{8}{61709} a^{12} + \frac{751}{2683} a^{11} + \frac{696}{2683} a^{10} - \frac{497}{2683} a^{9} - \frac{14144}{61709} a^{8} - \frac{588}{2683} a^{7} + \frac{15586}{61709} a^{6} - \frac{229}{2683} a^{5} + \frac{21753}{61709} a^{4} + \frac{941}{2683} a^{3} + \frac{22374}{61709} a^{2} - \frac{418}{2683} a + \frac{27831}{61709}$, $\frac{1}{61709} a^{17} + \frac{7}{61709} a^{15} + \frac{8}{61709} a^{13} - \frac{237}{2683} a^{11} - \frac{170}{2683} a^{10} - \frac{14029}{61709} a^{9} + \frac{550}{2683} a^{8} - \frac{17833}{61709} a^{7} - \frac{704}{2683} a^{6} - \frac{30158}{61709} a^{5} - \frac{943}{2683} a^{4} + \frac{12990}{61709} a^{3} + \frac{1104}{2683} a^{2} + \frac{20678}{61709} a - \frac{464}{2683}$, $\frac{1}{1916866667} a^{18} - \frac{4215}{1916866667} a^{17} + \frac{13832}{1916866667} a^{16} + \frac{128344}{1916866667} a^{15} + \frac{300287}{1916866667} a^{14} + \frac{200236}{1916866667} a^{13} + \frac{184292}{1916866667} a^{12} + \frac{20754358}{83342029} a^{11} - \frac{41140605}{1916866667} a^{10} - \frac{700329444}{1916866667} a^{9} + \frac{96476806}{1916866667} a^{8} + \frac{134845023}{1916866667} a^{7} - \frac{437617502}{1916866667} a^{6} + \frac{795855276}{1916866667} a^{5} - \frac{602968981}{1916866667} a^{4} - \frac{356705751}{1916866667} a^{3} + \frac{387234109}{1916866667} a^{2} + \frac{600351192}{1916866667} a - \frac{403363349}{1916866667}$, $\frac{1}{9513400271281636263345917664532921271819300458448333} a^{19} - \frac{1795924349180783358943689676401544304370608}{9513400271281636263345917664532921271819300458448333} a^{18} - \frac{271266345579429413041967649366340597399875174}{413626098751375489710692072370996577035621759062971} a^{17} - \frac{13529871370900630957040530078224746316025942047}{9513400271281636263345917664532921271819300458448333} a^{16} - \frac{1656005957089904242506869786924144671604402262106}{9513400271281636263345917664532921271819300458448333} a^{15} + \frac{1469903732885387355663057743006106406151442896953}{9513400271281636263345917664532921271819300458448333} a^{14} - \frac{1389650964010705163163019849911728097277789090380}{9513400271281636263345917664532921271819300458448333} a^{13} - \frac{250178715098137836157900331052387526661004942627}{9513400271281636263345917664532921271819300458448333} a^{12} - \frac{1867931783674162935566145902781783195548113872390590}{9513400271281636263345917664532921271819300458448333} a^{11} + \frac{1291458686239300670018824544088936853400486897141030}{9513400271281636263345917664532921271819300458448333} a^{10} - \frac{739917221074456147201333045300984542422264865987860}{9513400271281636263345917664532921271819300458448333} a^{9} - \frac{2166041047310564276543101982468415858438618564757882}{9513400271281636263345917664532921271819300458448333} a^{8} - \frac{3958693675685516761375042477028289067618916830718605}{9513400271281636263345917664532921271819300458448333} a^{7} + \frac{1951767981011173179929819690161514689617244950812366}{9513400271281636263345917664532921271819300458448333} a^{6} - \frac{267467333800752262329256600634154770130699451746319}{9513400271281636263345917664532921271819300458448333} a^{5} + \frac{125887640968938490663637654536681768953848879687359}{413626098751375489710692072370996577035621759062971} a^{4} + \frac{3405927438975695591071535777516117629926475971613487}{9513400271281636263345917664532921271819300458448333} a^{3} + \frac{723468553095166736072909833052000199703242951331343}{9513400271281636263345917664532921271819300458448333} a^{2} + \frac{3842755665639583620789478992368456891642227126706666}{9513400271281636263345917664532921271819300458448333} a + \frac{305066174419993785563198546131478499732607493933084}{9513400271281636263345917664532921271819300458448333}$
Class group and class number
$C_{318300}$, which has order $318300$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-286}) \), \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-143})\), \(\Q(\zeta_{11})^+\), 10.0.28688039019625283584.1, 10.0.875489472034463.1, 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||