Normalized defining polynomial
\( x^{20} - 10 x^{19} + 59 x^{18} - 246 x^{17} + 1053 x^{16} - 4140 x^{15} + 13682 x^{14} - 36380 x^{13} + 102753 x^{12} - 284654 x^{11} + 626493 x^{10} - 1026202 x^{9} + 2425991 x^{8} - 5844692 x^{7} + 6672306 x^{6} - 1607844 x^{5} + 27205499 x^{4} - 57625378 x^{3} - 30848325 x^{2} + 60230034 x + 328199719 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(823003582791542802072855307752419885056=2^{30}\cdot 11^{18}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1144=2^{3}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1144}(1,·)$, $\chi_{1144}(261,·)$, $\chi_{1144}(441,·)$, $\chi_{1144}(961,·)$, $\chi_{1144}(521,·)$, $\chi_{1144}(909,·)$, $\chi_{1144}(1117,·)$, $\chi_{1144}(469,·)$, $\chi_{1144}(25,·)$, $\chi_{1144}(729,·)$, $\chi_{1144}(285,·)$, $\chi_{1144}(805,·)$, $\chi_{1144}(677,·)$, $\chi_{1144}(753,·)$, $\chi_{1144}(1065,·)$, $\chi_{1144}(365,·)$, $\chi_{1144}(989,·)$, $\chi_{1144}(625,·)$, $\chi_{1144}(313,·)$, $\chi_{1144}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{7} - \frac{1}{8} a^{3} - \frac{1}{8} a$, $\frac{1}{184} a^{14} - \frac{7}{184} a^{13} - \frac{1}{184} a^{11} + \frac{11}{184} a^{10} + \frac{1}{92} a^{9} - \frac{1}{184} a^{8} - \frac{9}{184} a^{7} - \frac{25}{184} a^{6} - \frac{9}{92} a^{5} - \frac{1}{184} a^{4} - \frac{5}{184} a^{3} - \frac{27}{92} a^{2} + \frac{61}{184} a - \frac{3}{8}$, $\frac{1}{184} a^{15} - \frac{3}{184} a^{13} - \frac{1}{184} a^{12} + \frac{1}{46} a^{11} - \frac{13}{184} a^{10} + \frac{13}{184} a^{9} - \frac{2}{23} a^{8} + \frac{1}{46} a^{7} - \frac{9}{184} a^{6} - \frac{35}{184} a^{5} - \frac{3}{46} a^{4} + \frac{3}{184} a^{3} - \frac{41}{184} a^{2} - \frac{7}{23} a - \frac{1}{8}$, $\frac{1}{368} a^{16} - \frac{11}{184} a^{13} + \frac{1}{92} a^{12} + \frac{15}{184} a^{11} - \frac{1}{8} a^{10} + \frac{9}{92} a^{9} - \frac{45}{368} a^{8} - \frac{41}{184} a^{7} + \frac{37}{184} a^{6} - \frac{5}{92} a^{5} - \frac{1}{8} a^{4} - \frac{5}{184} a^{3} - \frac{63}{184} a^{2} + \frac{57}{184} a + \frac{1}{16}$, $\frac{1}{15824} a^{17} + \frac{13}{15824} a^{16} - \frac{3}{7912} a^{15} + \frac{21}{7912} a^{13} + \frac{17}{989} a^{12} - \frac{771}{7912} a^{11} - \frac{351}{7912} a^{10} + \frac{39}{368} a^{9} - \frac{1053}{15824} a^{8} - \frac{1619}{7912} a^{7} - \frac{1663}{7912} a^{6} + \frac{429}{3956} a^{5} + \frac{1055}{7912} a^{4} + \frac{665}{1978} a^{3} - \frac{1923}{7912} a^{2} + \frac{1435}{15824} a - \frac{83}{688}$, $\frac{1}{3672411598358692698750224} a^{18} - \frac{9}{3672411598358692698750224} a^{17} - \frac{4878506504669127392605}{3672411598358692698750224} a^{16} - \frac{111183167013878991541}{459051449794836587343778} a^{15} - \frac{1078581644701349111147}{918102899589673174687556} a^{14} - \frac{36993311343405659646487}{1836205799179346349375112} a^{13} - \frac{21868503129091269948559}{459051449794836587343778} a^{12} - \frac{920745352190461683233}{39917517373464051073372} a^{11} - \frac{320281664753473078801561}{3672411598358692698750224} a^{10} - \frac{13506616645606016394865}{159670069493856204293488} a^{9} + \frac{13007264930344278689461}{159670069493856204293488} a^{8} + \frac{2492440494827205803203}{918102899589673174687556} a^{7} - \frac{149133029906108188186797}{1836205799179346349375112} a^{6} - \frac{434027077356688738521359}{1836205799179346349375112} a^{5} + \frac{38880351597745821996461}{459051449794836587343778} a^{4} - \frac{9717602370503799053463}{39917517373464051073372} a^{3} - \frac{651821732310982152326309}{3672411598358692698750224} a^{2} + \frac{1689486713522282912979647}{3672411598358692698750224} a - \frac{57064913562604241134203}{159670069493856204293488}$, $\frac{1}{1624671218702287291234400347376} a^{19} + \frac{110595}{812335609351143645617200173688} a^{18} + \frac{14184174369636136792563643}{1624671218702287291234400347376} a^{17} + \frac{503872519670712266958422623}{812335609351143645617200173688} a^{16} + \frac{191349636142477596496711167}{812335609351143645617200173688} a^{15} - \frac{1444440719240338271291733925}{812335609351143645617200173688} a^{14} - \frac{29141927088077341256518083485}{812335609351143645617200173688} a^{13} - \frac{1109520395642632916970137147}{35318939537006245461617398856} a^{12} + \frac{186680457300658838272543157043}{1624671218702287291234400347376} a^{11} + \frac{83608655512175252349463097007}{812335609351143645617200173688} a^{10} - \frac{2787261130291028705873494577}{70637879074012490923234797712} a^{9} - \frac{8628000959449438924029799991}{203083902337785911404300043422} a^{8} + \frac{136569947156933779922141350869}{812335609351143645617200173688} a^{7} - \frac{7358367576705620628183574043}{101541951168892955702150021711} a^{6} - \frac{178072880145683220078506301901}{812335609351143645617200173688} a^{5} + \frac{194909511566824609801669295861}{812335609351143645617200173688} a^{4} - \frac{531679580146723464448440851411}{1624671218702287291234400347376} a^{3} + \frac{28545956081909625135779362713}{203083902337785911404300043422} a^{2} + \frac{744357966280980338980989196435}{1624671218702287291234400347376} a - \frac{8837194132474434291418463117}{35318939537006245461617398856}$
Class group and class number
$C_{140052}$, which has order $140052$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2015201.7242 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-286}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{13}, \sqrt{-22})\), \(\Q(\zeta_{11})^+\), 10.0.28688039019625283584.1, 10.10.79589952003133.1, 10.0.77265229938688.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $13$ | 13.10.5.1 | $x^{10} - 676 x^{6} + 114244 x^{2} - 13366548$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 13.10.5.1 | $x^{10} - 676 x^{6} + 114244 x^{2} - 13366548$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |