Properties

Label 20.0.82294356800...3125.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{20}\cdot 29^{15}$
Root discriminant $62.48$
Ramified primes $5, 29$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_4\times F_5$ (as 20T20)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16807, 0, 0, 0, 0, -3454, 0, 0, 0, 0, 227, 0, 0, 0, 0, -8, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^15 + 227*x^10 - 3454*x^5 + 16807)
 
gp: K = bnfinit(x^20 - 8*x^15 + 227*x^10 - 3454*x^5 + 16807, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{15} + 227 x^{10} - 3454 x^{5} + 16807 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(822943568000620311827564239501953125=5^{20}\cdot 29^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $62.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{5} - \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{6} - \frac{1}{6} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{7} - \frac{1}{6} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{8} - \frac{1}{6} a^{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{9} - \frac{1}{6} a^{4}$, $\frac{1}{27462} a^{15} + \frac{49}{1194} a^{10} + \frac{11543}{27462} a^{5} + \frac{509}{4577}$, $\frac{1}{192234} a^{16} + \frac{124}{4179} a^{11} + \frac{10315}{32039} a^{6} + \frac{25939}{192234} a$, $\frac{1}{1345638} a^{17} - \frac{3931}{58506} a^{12} + \frac{52669}{448546} a^{7} - \frac{227323}{672819} a^{2}$, $\frac{1}{9419466} a^{18} + \frac{12661}{204771} a^{13} - \frac{758621}{1569911} a^{8} - \frac{1127465}{9419466} a^{3}$, $\frac{1}{65936262} a^{19} - \frac{179449}{2866794} a^{14} + \frac{6332313}{21978754} a^{9} - \frac{12338065}{32968131} a^{4}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9596721496.779882 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\times F_5$ (as 20T20):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 80
The 20 conjugacy class representatives for $C_4\times F_5$
Character table for $C_4\times F_5$

Intermediate fields

\(\Q(\sqrt{29}) \), 4.0.24389.1, 5.1.2628125.1, 10.2.200304189453125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ $20$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.10.7$x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$$5$$2$$10$$F_{5}\times C_2$$[5/4]_{4}^{2}$
5.10.10.7$x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$$5$$2$$10$$F_{5}\times C_2$$[5/4]_{4}^{2}$
$29$29.4.3.2$x^{4} - 116$$4$$1$$3$$C_4$$[\ ]_{4}$
29.8.6.1$x^{8} - 203 x^{4} + 68121$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
29.8.6.1$x^{8} - 203 x^{4} + 68121$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$