Properties

Label 20.0.82219015710...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 5^{10}\cdot 601^{5}$
Root discriminant $31.31$
Ramified primes $2, 5, 601$
Class number $20$ (GRH)
Class group $[20]$ (GRH)
Galois group $C_2\times D_5\wr C_2$ (as 20T92)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![615424, 0, 1062400, 0, -185856, 0, -15232, 0, 19328, 0, 2528, 0, -1760, 0, 344, 0, -12, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^18 - 12*x^16 + 344*x^14 - 1760*x^12 + 2528*x^10 + 19328*x^8 - 15232*x^6 - 185856*x^4 + 1062400*x^2 + 615424)
 
gp: K = bnfinit(x^20 - 4*x^18 - 12*x^16 + 344*x^14 - 1760*x^12 + 2528*x^10 + 19328*x^8 - 15232*x^6 - 185856*x^4 + 1062400*x^2 + 615424, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{18} - 12 x^{16} + 344 x^{14} - 1760 x^{12} + 2528 x^{10} + 19328 x^{8} - 15232 x^{6} - 185856 x^{4} + 1062400 x^{2} + 615424 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(822190157101803765760000000000=2^{30}\cdot 5^{10}\cdot 601^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 601$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{43332038738915001856} a^{18} - \frac{10063002218282067}{10833009684728750464} a^{16} - \frac{116764551080589}{338531552647773452} a^{14} - \frac{6982418889822669}{2708252421182187616} a^{12} - \frac{8300588059930953}{1354126210591093808} a^{10} - \frac{4065021203017385}{338531552647773452} a^{8} - \frac{15348034364560329}{677063105295546904} a^{6} - \frac{19816476849258171}{169265776323886726} a^{4} - \frac{14326773360226501}{84632888161943363} a^{2} - \frac{25020759915059215}{84632888161943363}$, $\frac{1}{43332038738915001856} a^{19} - \frac{10063002218282067}{10833009684728750464} a^{17} - \frac{116764551080589}{338531552647773452} a^{15} - \frac{6982418889822669}{2708252421182187616} a^{13} - \frac{8300588059930953}{1354126210591093808} a^{11} - \frac{4065021203017385}{338531552647773452} a^{9} - \frac{15348034364560329}{677063105295546904} a^{7} - \frac{19816476849258171}{169265776323886726} a^{5} - \frac{14326773360226501}{84632888161943363} a^{3} - \frac{25020759915059215}{84632888161943363} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{20}$, which has order $20$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 226298.000609 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_5\wr C_2$ (as 20T92):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 400
The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$
Character table for $C_2\times D_5\wr C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.961600.5, 10.2.1128753125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
601Data not computed