Normalized defining polynomial
\( x^{20} + 125 x^{18} + 6855 x^{16} - 4 x^{15} + 216740 x^{14} + 210 x^{13} + 4369535 x^{12} + 21030 x^{11} + 58615057 x^{10} + 468870 x^{9} + 529079305 x^{8} + 3402250 x^{7} + 3169335980 x^{6} - 5313886 x^{5} + 12067309335 x^{4} - 145608970 x^{3} + 26550173765 x^{2} - 361510800 x + 26151329351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8218614411848445156250000000000000000=2^{16}\cdot 5^{22}\cdot 47^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{1}{14} a^{16} - \frac{3}{14} a^{15} - \frac{3}{14} a^{14} - \frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{1}{14} a^{11} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{2} a^{7} - \frac{1}{14} a^{6} + \frac{1}{14} a^{5} + \frac{3}{14} a^{4} - \frac{3}{7} a^{3} + \frac{1}{14} a^{2} - \frac{3}{7} a$, $\frac{1}{4620781349327861035510336137568281612229590834425329195225987630828092802} a^{19} - \frac{135425837146644977040011385261620183015891878032086998026925222022586137}{4620781349327861035510336137568281612229590834425329195225987630828092802} a^{18} + \frac{1125688615712597739427974208743679335273703332975946786285936300700477211}{4620781349327861035510336137568281612229590834425329195225987630828092802} a^{17} - \frac{410235235545468643055884242743654121504328076837073951868148678092328402}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{16} - \frac{403904009341559581825692155379933690585351000982610946840956020288767230}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{15} + \frac{158293472508860485811910045947424383787957596675265601174690162763803929}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{14} - \frac{333831899549976383447017195278571329306054675746834665863066948533573511}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{13} - \frac{352866224621481644542679838646991250483096938606479542837439635966430649}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{12} + \frac{44223952461110596481831409856672726247155340533552444343404064423903953}{4620781349327861035510336137568281612229590834425329195225987630828092802} a^{11} + \frac{389839527897843942301275884745175755589059567781411166324091678726096750}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{10} - \frac{1008104938307466608394906294786625284507424181814211672715755541614323131}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{9} + \frac{26104012777880837896417054102499586253169836217576917628735111819451047}{4620781349327861035510336137568281612229590834425329195225987630828092802} a^{8} + \frac{219597314120092594556564539490695972319986337448220262866429982573348785}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{7} - \frac{208184249691111377610964787326407317273085688243703836305448335315453375}{660111621332551576501476591081183087461370119203618456460855375832584686} a^{6} + \frac{49244321479317961088057937576645398144647416085888734858121328810214837}{200903536927298305891753745111664417923025688453275182401129896992525774} a^{5} - \frac{1624613485442020850310380572518583075023929192027491173671439040538970685}{4620781349327861035510336137568281612229590834425329195225987630828092802} a^{4} - \frac{2223663801892652863771584726378587889300515175975292899773737750100517139}{4620781349327861035510336137568281612229590834425329195225987630828092802} a^{3} + \frac{229448451272219541305232310532984206301050763019158458339380563587784520}{2310390674663930517755168068784140806114795417212664597612993815414046401} a^{2} + \frac{9771168318762742858242158488376646059798049741232601147675938172703878}{100451768463649152945876872555832208961512844226637591200564948496262887} a - \frac{178182827568134127476646201734735318235279885368573836843122155303779119}{660111621332551576501476591081183087461370119203618456460855375832584686}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{-235}) \), \(\Q(\sqrt{5}, \sqrt{-47})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.573362517500000000.1, 10.0.2866812587500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |