Normalized defining polynomial
\( x^{20} - 18 x^{18} + 83 x^{16} - 12 x^{14} + 357 x^{12} - 3306 x^{10} + 2885 x^{8} + 36816 x^{6} - 21389 x^{4} - 274590 x^{2} + 622521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(819763362363033867895669628338176=2^{20}\cdot 3^{10}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{24} a^{10} - \frac{1}{8} a^{8} - \frac{5}{24} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} - \frac{11}{24} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{24} a^{11} - \frac{1}{8} a^{9} - \frac{5}{24} a^{7} + \frac{3}{8} a^{5} - \frac{11}{24} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{24} a^{12} - \frac{1}{12} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8}$, $\frac{1}{24} a^{13} - \frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{10} + \frac{1}{16} a^{8} - \frac{1}{4} a^{7} + \frac{11}{48} a^{6} - \frac{1}{2} a^{5} + \frac{5}{16} a^{4} - \frac{1}{2} a^{3} + \frac{5}{24} a^{2} - \frac{1}{4} a + \frac{1}{16}$, $\frac{1}{48} a^{15} - \frac{1}{48} a^{11} + \frac{1}{16} a^{9} - \frac{1}{48} a^{7} - \frac{1}{4} a^{6} + \frac{5}{16} a^{5} - \frac{7}{24} a^{3} + \frac{5}{16} a - \frac{1}{4}$, $\frac{1}{144} a^{16} - \frac{1}{48} a^{12} - \frac{1}{48} a^{10} - \frac{5}{48} a^{8} - \frac{3}{16} a^{6} - \frac{7}{36} a^{4} - \frac{5}{48} a^{2}$, $\frac{1}{144} a^{17} - \frac{1}{48} a^{13} - \frac{1}{48} a^{11} - \frac{5}{48} a^{9} - \frac{3}{16} a^{7} - \frac{7}{36} a^{5} - \frac{5}{48} a^{3}$, $\frac{1}{1682674073161320096} a^{18} - \frac{1}{288} a^{17} - \frac{257464683640925}{280445678860220016} a^{16} - \frac{1}{96} a^{15} + \frac{115625833783843}{12747530857282728} a^{14} + \frac{1}{96} a^{13} + \frac{1236014167868861}{560891357720440032} a^{12} - \frac{5330426802192175}{280445678860220016} a^{10} - \frac{1}{24} a^{9} - \frac{197117932150367}{93481892953406672} a^{8} - \frac{1}{24} a^{7} + \frac{185046071241140909}{1682674073161320096} a^{6} - \frac{143}{288} a^{5} - \frac{65785745946761959}{140222839430110008} a^{4} - \frac{43}{96} a^{3} + \frac{20007140429518291}{93481892953406672} a^{2} + \frac{1}{32} a - \frac{72388289927901257}{186963785906813344}$, $\frac{1}{442543281241427185248} a^{19} + \frac{179576379495379877}{442543281241427185248} a^{17} - \frac{1}{288} a^{16} - \frac{27688293974697319}{13410402461861429856} a^{15} - \frac{1}{96} a^{14} + \frac{1148692504917960121}{73757213540237864208} a^{13} + \frac{1}{96} a^{12} - \frac{243271699063697961}{24585737846745954736} a^{11} + \frac{6578196862799543441}{73757213540237864208} a^{9} - \frac{1}{24} a^{8} + \frac{88455323492495390945}{442543281241427185248} a^{7} + \frac{5}{24} a^{6} + \frac{49369449236451123937}{442543281241427185248} a^{5} - \frac{143}{288} a^{4} - \frac{29087206087052887337}{147514427080475728416} a^{3} + \frac{5}{96} a^{2} - \frac{2178405192452107625}{12292868923372977368} a - \frac{7}{32}$
Class group and class number
$C_{11}\times C_{22}$, which has order $242$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2636356.57032 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-489}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-163}) \), \(\Q(\sqrt{3}, \sqrt{-163})\), 5.1.3825936.1 x5, 10.0.28631509956043776.1, 10.2.175653435313152.1 x5, 10.0.2385959163003648.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $163$ | 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |