Normalized defining polynomial
\( x^{20} - 234 x^{16} - 1208 x^{14} + 14355 x^{12} + 160128 x^{10} + 603766 x^{8} + 1060704 x^{6} + 977697 x^{4} + 835704 x^{2} + 352836 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(819763362363033867895669628338176=2^{20}\cdot 3^{10}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3}$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{5}{12} a^{5} - \frac{1}{2} a^{4} - \frac{1}{12} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2}$, $\frac{1}{36} a^{9} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{5}{12} a^{5} - \frac{1}{12} a^{4} - \frac{4}{9} a^{3} + \frac{5}{12} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{36} a^{10} - \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{7}{18} a^{4} - \frac{1}{2} a^{3} + \frac{5}{12} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{72} a^{11} + \frac{1}{24} a^{7} - \frac{1}{12} a^{6} + \frac{5}{18} a^{5} + \frac{5}{12} a^{4} + \frac{7}{24} a^{3} - \frac{1}{12} a^{2} - \frac{1}{4} a$, $\frac{1}{72} a^{12} - \frac{1}{24} a^{8} - \frac{1}{18} a^{6} + \frac{11}{24} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{72} a^{13} - \frac{1}{72} a^{9} + \frac{1}{36} a^{7} - \frac{1}{12} a^{6} + \frac{5}{24} a^{5} - \frac{1}{12} a^{4} + \frac{2}{9} a^{3} + \frac{5}{12} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{432} a^{14} - \frac{1}{144} a^{13} + \frac{1}{432} a^{12} + \frac{1}{432} a^{10} - \frac{1}{144} a^{9} - \frac{7}{432} a^{8} - \frac{1}{18} a^{7} - \frac{19}{432} a^{6} + \frac{1}{48} a^{5} + \frac{89}{432} a^{4} + \frac{1}{36} a^{3} + \frac{2}{9} a^{2} + \frac{1}{12} a + \frac{1}{4}$, $\frac{1}{4752} a^{15} + \frac{1}{1188} a^{13} - \frac{1}{144} a^{12} + \frac{31}{4752} a^{11} + \frac{1}{108} a^{9} + \frac{1}{48} a^{8} - \frac{157}{4752} a^{7} + \frac{1}{36} a^{6} + \frac{31}{108} a^{5} + \frac{13}{48} a^{4} - \frac{43}{88} a^{3} + \frac{1}{4} a^{2} - \frac{65}{132} a - \frac{1}{4}$, $\frac{1}{38016} a^{16} + \frac{37}{38016} a^{14} - \frac{1}{144} a^{13} - \frac{1}{19008} a^{12} - \frac{5}{3456} a^{10} - \frac{1}{144} a^{9} + \frac{697}{19008} a^{8} + \frac{1}{36} a^{7} + \frac{163}{3456} a^{6} + \frac{5}{48} a^{5} - \frac{335}{4224} a^{4} + \frac{1}{9} a^{3} - \frac{461}{1056} a^{2} - \frac{5}{12} a - \frac{7}{32}$, $\frac{1}{114048} a^{17} - \frac{1}{38016} a^{15} + \frac{17}{19008} a^{13} + \frac{289}{114048} a^{11} + \frac{53}{6336} a^{9} + \frac{1811}{38016} a^{7} + \frac{27169}{114048} a^{5} - \frac{1}{2} a^{4} + \frac{3937}{9504} a^{3} + \frac{203}{1056} a$, $\frac{1}{425315947203658368} a^{18} - \frac{115951384127}{70885991200609728} a^{16} + \frac{9724514701643}{47257327467073152} a^{14} - \frac{1}{144} a^{13} + \frac{185803982867659}{32716611323358336} a^{12} - \frac{1289684349467383}{141771982401219456} a^{10} - \frac{1}{144} a^{9} + \frac{771577786913}{15752442489024384} a^{8} + \frac{1}{36} a^{7} + \frac{12423416614957}{308647276635456} a^{6} + \frac{5}{48} a^{5} + \frac{9015856031571695}{141771982401219456} a^{4} - \frac{7}{18} a^{3} + \frac{770017380950449}{2953582966692072} a^{2} + \frac{1}{12} a + \frac{195348758203}{3616263197664}$, $\frac{1}{425315947203658368} a^{19} - \frac{115951384127}{70885991200609728} a^{17} - \frac{220209091933}{47257327467073152} a^{15} - \frac{68933941998557}{32716611323358336} a^{13} - \frac{245488351141903}{141771982401219456} a^{11} + \frac{61030504667491}{5250814163008128} a^{9} - \frac{7386646384583}{308647276635456} a^{7} - \frac{48414923876329705}{141771982401219456} a^{5} - \frac{1109535416035415}{2953582966692072} a^{3} - \frac{1}{2} a^{2} - \frac{6013988837797}{13259631724768} a$
Class group and class number
$C_{11}\times C_{22}$, which has order $242$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2738059}{849098422656} a^{19} - \frac{340597}{283032807552} a^{17} - \frac{17847205}{23586067296} a^{15} - \frac{3064733465}{849098422656} a^{13} + \frac{426433309}{8844775236} a^{11} + \frac{5250371975}{10482696576} a^{9} + \frac{1462723422397}{849098422656} a^{7} + \frac{340060542553}{141516403776} a^{5} + \frac{23916665917}{23586067296} a^{3} + \frac{41190461}{39707184} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 231426336.202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-489}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{163}) \), \(\Q(\sqrt{-3}, \sqrt{163})\), 5.1.3825936.1 x5, 10.0.28631509956043776.1, 10.0.43913358828288.1 x5, 10.2.9543836652014592.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $163$ | 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.1 | $x^{2} - 163$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |