Normalized defining polynomial
\( x^{20} - 14 x^{18} + 167 x^{16} - 780 x^{14} + 2015 x^{12} + 11490 x^{10} - 72343 x^{8} + 144184 x^{6} - 155888 x^{4} + 61440 x^{2} + 147456 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(819763362363033867895669628338176=2^{20}\cdot 3^{10}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{3}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} + \frac{1}{32} a^{6} + \frac{1}{32} a^{5} + \frac{1}{32} a^{4} - \frac{1}{16} a^{3}$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{64} a^{4} + \frac{1}{16} a^{3} + \frac{1}{16} a^{2}$, $\frac{1}{128} a^{13} - \frac{1}{32} a^{10} + \frac{1}{64} a^{9} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{3}{128} a^{5} - \frac{7}{32} a^{4} + \frac{7}{32} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{768} a^{14} - \frac{1}{256} a^{13} + \frac{1}{384} a^{12} - \frac{1}{64} a^{11} + \frac{1}{128} a^{10} - \frac{3}{128} a^{9} - \frac{5}{192} a^{8} - \frac{5}{256} a^{6} + \frac{7}{256} a^{5} - \frac{23}{384} a^{4} - \frac{15}{64} a^{3} - \frac{7}{96} a^{2} - \frac{1}{4} a$, $\frac{1}{768} a^{15} - \frac{1}{768} a^{13} - \frac{1}{128} a^{12} - \frac{1}{128} a^{11} + \frac{5}{384} a^{9} - \frac{1}{64} a^{8} - \frac{5}{256} a^{7} - \frac{1}{32} a^{6} - \frac{73}{768} a^{5} + \frac{3}{128} a^{4} + \frac{37}{192} a^{3} + \frac{1}{32} a^{2} + \frac{1}{4} a$, $\frac{1}{3072} a^{16} + \frac{1}{3072} a^{14} + \frac{11}{1536} a^{12} - \frac{1}{1536} a^{10} - \frac{1}{32} a^{9} + \frac{65}{3072} a^{8} - \frac{1}{32} a^{7} + \frac{113}{3072} a^{6} - \frac{3}{32} a^{5} - \frac{59}{384} a^{4} + \frac{1}{32} a^{3} + \frac{65}{192} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{9216} a^{17} - \frac{1}{3072} a^{15} + \frac{13}{4608} a^{13} - \frac{1}{128} a^{12} - \frac{37}{4608} a^{11} - \frac{263}{9216} a^{9} - \frac{1}{64} a^{8} + \frac{461}{9216} a^{7} - \frac{1}{32} a^{6} + \frac{3}{256} a^{5} - \frac{29}{128} a^{4} - \frac{2}{9} a^{3} - \frac{7}{32} a^{2} - \frac{1}{6} a$, $\frac{1}{1819243806741504} a^{18} - \frac{47979772175}{303207301123584} a^{16} + \frac{332115453503}{1819243806741504} a^{14} - \frac{1}{256} a^{13} + \frac{249356707787}{41346450153216} a^{12} - \frac{1}{64} a^{11} - \frac{53552497474001}{1819243806741504} a^{10} + \frac{1}{128} a^{9} - \frac{10833307920701}{909621903370752} a^{8} + \frac{1}{32} a^{7} + \frac{12104164845849}{202138200749056} a^{6} + \frac{31}{256} a^{5} - \frac{25390609208849}{113702737921344} a^{4} - \frac{1}{64} a^{3} + \frac{1240827918937}{37900912640448} a^{2} - \frac{1}{8} a + \frac{130535142685}{394801173338}$, $\frac{1}{14553950453932032} a^{19} + \frac{250861856813}{7276975226966016} a^{17} - \frac{9143112706609}{14553950453932032} a^{15} - \frac{299718598823}{110257200408576} a^{13} - \frac{1}{128} a^{12} + \frac{15932509033487}{14553950453932032} a^{11} - \frac{14319873194307}{808552802996224} a^{9} - \frac{1}{64} a^{8} - \frac{500635528021231}{14553950453932032} a^{7} - \frac{1}{32} a^{6} - \frac{27685349777425}{1819243806741504} a^{5} - \frac{29}{128} a^{4} - \frac{157751196138431}{909621903370752} a^{3} + \frac{9}{32} a^{2} - \frac{3951207478663}{9475228160112} a - \frac{1}{2}$
Class group and class number
$C_{11}\times C_{22}$, which has order $242$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{36484847}{18706877190144} a^{19} - \frac{336321437}{9353438595072} a^{17} + \frac{7814939137}{18706877190144} a^{15} - \frac{372283897}{141718766592} a^{13} + \frac{124580474497}{18706877190144} a^{11} + \frac{18384683155}{1039270955008} a^{9} - \frac{4922072346977}{18706877190144} a^{7} + \frac{1169346437449}{2338359648768} a^{5} - \frac{522067905649}{1169179824384} a^{3} + \frac{8765163601}{12178956504} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1141791581.42 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-489}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{489}) \), \(\Q(i, \sqrt{489})\), 5.1.3825936.1 x5, 10.0.28631509956043776.1, 10.0.58551145104384.1 x5, 10.2.7157877489010944.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $163$ | 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |