Normalized defining polynomial
\( x^{20} - 3 x^{19} + 5 x^{18} + 29 x^{17} + 2 x^{16} - 447 x^{15} + 1875 x^{14} - 2988 x^{13} - 797 x^{12} + 13317 x^{11} - 13069 x^{10} - 45010 x^{9} + 158294 x^{8} - 203394 x^{7} + 94740 x^{6} + 88164 x^{5} - 87665 x^{4} + 23262 x^{3} + 85694 x^{2} - 52120 x + 15161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8181810539473601738391143798828125=5^{15}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{1989} a^{18} + \frac{5}{1989} a^{17} - \frac{16}{1989} a^{16} - \frac{61}{663} a^{15} + \frac{59}{663} a^{14} + \frac{22}{221} a^{13} - \frac{5}{221} a^{12} - \frac{59}{663} a^{11} - \frac{131}{1989} a^{10} - \frac{139}{1989} a^{9} - \frac{223}{1989} a^{8} - \frac{101}{663} a^{7} + \frac{8}{39} a^{6} - \frac{72}{221} a^{5} - \frac{2}{13} a^{4} + \frac{200}{663} a^{3} + \frac{112}{1989} a^{2} + \frac{818}{1989} a - \frac{121}{1989}$, $\frac{1}{2833377915191259193499690583197615177943482141139} a^{19} + \frac{263664347720278055054755435307884314036624770}{2833377915191259193499690583197615177943482141139} a^{18} + \frac{14394736345690425907900525510671472358339948371}{944459305063753064499896861065871725981160713713} a^{17} - \frac{112779451141376641998211810430473708248690957904}{2833377915191259193499690583197615177943482141139} a^{16} - \frac{35094214895099938105661218769412353948189694739}{314819768354584354833298953688623908660386904571} a^{15} - \frac{11015844201677377225576278868593836337711767264}{944459305063753064499896861065871725981160713713} a^{14} + \frac{6314991616764765390114870009857284816224649736}{104939922784861451611099651229541302886795634857} a^{13} + \frac{30376395179744959438725196785486260126164876456}{314819768354584354833298953688623908660386904571} a^{12} - \frac{422424462108414251667625731556001030310406901222}{2833377915191259193499690583197615177943482141139} a^{11} + \frac{81564111121073115635047059998758148611930852}{2527544973408794998661632991255678124838075059} a^{10} - \frac{12020854916615115223826868398092170325202241650}{104939922784861451611099651229541302886795634857} a^{9} + \frac{244862108464567103129562700781317028312788680752}{2833377915191259193499690583197615177943482141139} a^{8} - \frac{4739072728535594851692231004725309503153764706}{18518809903210844401958761981683759332963935563} a^{7} - \frac{221358375031494665309079800380832586828320159905}{944459305063753064499896861065871725981160713713} a^{6} - \frac{2016876881462778382899476511298434467475848131}{18518809903210844401958761981683759332963935563} a^{5} - \frac{15850376102749145972379334265587035298766162816}{34979974261620483870366550409847100962265211619} a^{4} + \frac{137731132647884093679986976533290682229383194501}{2833377915191259193499690583197615177943482141139} a^{3} - \frac{1065077548304064360800017890139732230699044941006}{2833377915191259193499690583197615177943482141139} a^{2} + \frac{287777742153456195101053498421732620363490862347}{944459305063753064499896861065871725981160713713} a + \frac{629916454594035841096527707607993477494841892}{12820714548376738432125296756550294922821186159}$
Class group and class number
$C_{404}$, which has order $404$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2526424.45141 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $D_{20}$ |
| Character table for $D_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.50125.1, 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||