Normalized defining polynomial
\( x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 251 x^{16} - 300 x^{15} + 303 x^{14} - 64 x^{13} + 654 x^{12} - 836 x^{11} + 1629 x^{10} + 352 x^{9} - 442 x^{8} + 1545 x^{7} + 3077 x^{6} + 1939 x^{5} + 1665 x^{4} + 2206 x^{3} + 406 x^{2} + 95 x + 661 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81693426134005631737181457408=2^{10}\cdot 3^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{2}{11} a^{14} - \frac{2}{11} a^{13} - \frac{5}{11} a^{12} - \frac{2}{11} a^{11} - \frac{1}{11} a^{10} - \frac{1}{11} a^{9} - \frac{1}{11} a^{8} - \frac{1}{11} a^{7} - \frac{1}{11} a^{6} - \frac{1}{11} a^{5} - \frac{2}{11} a^{4} - \frac{3}{11} a^{3} + \frac{1}{11} a^{2} + \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{3}{11} a^{12} + \frac{3}{11} a^{11} + \frac{1}{11} a^{10} + \frac{1}{11} a^{9} + \frac{1}{11} a^{8} + \frac{1}{11} a^{7} + \frac{1}{11} a^{6} + \frac{1}{11} a^{4} - \frac{4}{11} a^{3} + \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{17} - \frac{4}{11} a^{13} - \frac{5}{11} a^{12} - \frac{5}{11} a^{10} - \frac{5}{11} a^{9} - \frac{5}{11} a^{8} - \frac{5}{11} a^{7} + \frac{5}{11} a^{6} - \frac{5}{11} a^{5} - \frac{5}{11} a^{4} - \frac{5}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11}$, $\frac{1}{253} a^{18} + \frac{10}{253} a^{17} + \frac{6}{253} a^{16} - \frac{10}{253} a^{15} + \frac{6}{253} a^{14} - \frac{53}{253} a^{13} - \frac{95}{253} a^{12} - \frac{61}{253} a^{10} - \frac{94}{253} a^{9} - \frac{50}{253} a^{8} - \frac{51}{253} a^{7} + \frac{94}{253} a^{6} + \frac{98}{253} a^{5} - \frac{95}{253} a^{4} - \frac{89}{253} a^{3} - \frac{8}{253} a^{2} - \frac{98}{253} a - \frac{83}{253}$, $\frac{1}{22431353948507038535844128809470287} a^{19} + \frac{81433707519192432396296475854}{22431353948507038535844128809470287} a^{18} + \frac{316082277912393390356473583503499}{22431353948507038535844128809470287} a^{17} - \frac{972303177232898604881573676889281}{22431353948507038535844128809470287} a^{16} + \frac{411384164888918666901496031536062}{22431353948507038535844128809470287} a^{15} + \frac{8119981471208888626613272323702124}{22431353948507038535844128809470287} a^{14} + \frac{9324138043007169363662029327487631}{22431353948507038535844128809470287} a^{13} + \frac{4857274325875180369857840623784198}{22431353948507038535844128809470287} a^{12} + \frac{93114641552759051363988633641759}{2039213995318821685076738982679117} a^{11} - \frac{6502288117437480311378536155316099}{22431353948507038535844128809470287} a^{10} + \frac{1965465695866137402612345107764369}{22431353948507038535844128809470287} a^{9} - \frac{1770897004483675254872039816182768}{22431353948507038535844128809470287} a^{8} - \frac{2206971545805324999297081613499902}{22431353948507038535844128809470287} a^{7} - \frac{507021449398969629066444553623179}{2039213995318821685076738982679117} a^{6} - \frac{138288655630054278773978109515833}{22431353948507038535844128809470287} a^{5} + \frac{9379311904305879535800583169552173}{22431353948507038535844128809470287} a^{4} + \frac{2548946808832522628008714538714569}{22431353948507038535844128809470287} a^{3} + \frac{10059138963557946959802962641616994}{22431353948507038535844128809470287} a^{2} - \frac{5772634823963015006412878791774123}{22431353948507038535844128809470287} a - \frac{1053945193214814039369760740757571}{22431353948507038535844128809470287}$
Class group and class number
$C_{10}$, which has order $10$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times D_4$ (as 20T12):
| A solvable group of order 40 |
| The 25 conjugacy class representatives for $C_5\times D_4$ |
| Character table for $C_5\times D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), 4.0.13068.1, \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |