Normalized defining polynomial
\( x^{20} - 28 x^{17} + 27 x^{16} - 94 x^{15} + 317 x^{14} + 48 x^{13} + 467 x^{12} - 2738 x^{11} + 507 x^{10} + 4890 x^{9} - 1129 x^{8} - 8098 x^{7} + 5124 x^{6} - 10404 x^{5} + 34209 x^{4} - 22032 x^{3} - 3645 x^{2} - 5832 x + 19683 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81245087289215930838213658148864=2^{20}\cdot 17^{2}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} - \frac{4}{9} a^{10} + \frac{2}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{13} - \frac{13}{27} a^{11} - \frac{7}{27} a^{10} - \frac{2}{9} a^{9} + \frac{8}{27} a^{8} - \frac{11}{27} a^{7} - \frac{2}{9} a^{6} + \frac{1}{9} a^{5} + \frac{5}{27} a^{4} + \frac{2}{27} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{81} a^{17} - \frac{1}{81} a^{14} + \frac{1}{3} a^{13} - \frac{13}{81} a^{12} - \frac{34}{81} a^{11} - \frac{11}{27} a^{10} + \frac{35}{81} a^{9} - \frac{11}{81} a^{8} + \frac{7}{27} a^{7} + \frac{1}{27} a^{6} + \frac{32}{81} a^{5} + \frac{2}{81} a^{4} + \frac{7}{27} a^{3} + \frac{2}{9} a^{2}$, $\frac{1}{78489} a^{18} + \frac{155}{26163} a^{17} + \frac{35}{2907} a^{16} - \frac{2215}{78489} a^{15} - \frac{1901}{26163} a^{14} - \frac{37327}{78489} a^{13} + \frac{23675}{78489} a^{12} - \frac{1762}{26163} a^{11} - \frac{1493}{4617} a^{10} - \frac{29879}{78489} a^{9} + \frac{3937}{8721} a^{8} + \frac{12193}{26163} a^{7} + \frac{26591}{78489} a^{6} - \frac{22621}{78489} a^{5} + \frac{12098}{26163} a^{4} - \frac{2075}{8721} a^{3} - \frac{4}{2907} a^{2} + \frac{94}{323} a - \frac{161}{323}$, $\frac{1}{136450179352557643600585635465980864493} a^{19} + \frac{696422771625226618781577705232}{891831237598415971245657748143665781} a^{18} + \frac{52659897553810979063845766216535829}{15161131039173071511176181718442318277} a^{17} - \frac{1704885876853622231851720909131009202}{136450179352557643600585635465980864493} a^{16} + \frac{572688094469466982141297033421601703}{15161131039173071511176181718442318277} a^{15} - \frac{3882695598471833477322920544682913269}{136450179352557643600585635465980864493} a^{14} + \frac{67137974558853556834309495516666659074}{136450179352557643600585635465980864493} a^{13} - \frac{15326010281155117374739697726427980807}{45483393117519214533528545155326954831} a^{12} - \frac{54409392179722812456306770447702746810}{136450179352557643600585635465980864493} a^{11} - \frac{56285703967295925358793061951870084944}{136450179352557643600585635465980864493} a^{10} + \frac{17376281760298731138812224284380288245}{45483393117519214533528545155326954831} a^{9} - \frac{13053220455459962258068019275348765070}{45483393117519214533528545155326954831} a^{8} + \frac{43118772542939513746722061511931465338}{136450179352557643600585635465980864493} a^{7} + \frac{1215714127738892797025745345739226300}{10496167642504434123121971958921604961} a^{6} + \frac{5339008352273387137182090576659554144}{45483393117519214533528545155326954831} a^{5} - \frac{368130331910690189725925305149230213}{15161131039173071511176181718442318277} a^{4} + \frac{616940225325403703617674793742091065}{5053710346391023837058727239480772759} a^{3} - \frac{303409034662098233602313878309955495}{1684570115463674612352909079826924253} a^{2} - \frac{52072078472950501267811661112041326}{187174457273741623594767675536324917} a + \frac{86578484950021052978601161100087794}{187174457273741623594767675536324917}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48387448.2957 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n848 are not computed |
| Character table for t20n848 is not computed |
Intermediate fields
| 5.5.160801.1, 10.4.26477528679424.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||