Normalized defining polynomial
\( x^{20} - 5 x^{19} + 20 x^{18} - 53 x^{17} + 135 x^{16} - 359 x^{15} + 888 x^{14} - 1964 x^{13} + 4087 x^{12} - 6699 x^{11} + 11320 x^{10} - 14375 x^{9} + 18116 x^{8} - 16578 x^{7} + 13361 x^{6} - 7273 x^{5} + 3010 x^{4} - 396 x^{3} + 126 x^{2} + 54 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8077201199519837905907996049=3^{24}\cdot 7^{6}\cdot 79^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{18} - \frac{2}{15} a^{17} + \frac{2}{15} a^{16} + \frac{2}{15} a^{15} + \frac{7}{15} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{1}{15} a^{6} + \frac{2}{15} a^{5} + \frac{4}{15} a^{4} - \frac{1}{3} a^{3} + \frac{2}{15} a^{2} - \frac{1}{5}$, $\frac{1}{3906807006855565701776157310397685} a^{19} + \frac{26545138588325919587588390625758}{3906807006855565701776157310397685} a^{18} + \frac{591169571517379227854616707791757}{3906807006855565701776157310397685} a^{17} - \frac{34644435071716256690255592014556}{1302269002285188567258719103465895} a^{16} + \frac{209527999069061360458558171146564}{1302269002285188567258719103465895} a^{15} + \frac{481556425819451583820454748790186}{1302269002285188567258719103465895} a^{14} - \frac{322360998737782734463377401265712}{3906807006855565701776157310397685} a^{13} - \frac{983929147373208187969334688899606}{3906807006855565701776157310397685} a^{12} + \frac{198696910048953641987129183084953}{3906807006855565701776157310397685} a^{11} - \frac{405164964335375789180476177828558}{3906807006855565701776157310397685} a^{10} - \frac{293906437838500971668380831977169}{781361401371113140355231462079537} a^{9} - \frac{1300418994414275780778537042193139}{3906807006855565701776157310397685} a^{8} - \frac{1920160240115283460231922772687281}{3906807006855565701776157310397685} a^{7} - \frac{1912688882181488596865290135293928}{3906807006855565701776157310397685} a^{6} + \frac{1278020995440304718064562848603194}{3906807006855565701776157310397685} a^{5} + \frac{276691361171387510115092087177410}{781361401371113140355231462079537} a^{4} + \frac{1354881712847787498420201810587962}{3906807006855565701776157310397685} a^{3} + \frac{118678498364748808282512914607701}{781361401371113140355231462079537} a^{2} + \frac{62265497193859385812284498720364}{1302269002285188567258719103465895} a - \frac{74289749718078718390117032844601}{260453800457037713451743820693179}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 789922.812913 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.403137.1, 10.4.12839035820751.1, 10.4.1137636085383.1, 10.2.89873250745257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.8.6.1 | $x^{8} - 553 x^{4} + 505521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |