Normalized defining polynomial
\( x^{20} + 155 x^{18} + 10590 x^{16} - 4 x^{15} + 419420 x^{14} + 270 x^{13} + 10654025 x^{12} + 32610 x^{11} + 181224553 x^{10} + 907860 x^{9} + 2088869500 x^{8} + 8435110 x^{7} + 16102101620 x^{6} - 14003998 x^{5} + 79491889440 x^{4} - 577697560 x^{3} + 227754848780 x^{2} - 1998540300 x + 290388198524 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79861992703225218906250000000000000000=2^{16}\cdot 5^{22}\cdot 59^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{1}{7} a^{15} - \frac{3}{14} a^{13} + \frac{3}{14} a^{12} - \frac{3}{14} a^{11} - \frac{3}{14} a^{10} + \frac{1}{14} a^{9} + \frac{5}{14} a^{8} + \frac{5}{14} a^{7} + \frac{1}{7} a^{6} + \frac{5}{14} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{19} - \frac{5113927251925331245408920803407476940295330353476009167792916927842562208295}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{18} + \frac{18095641116955830905817961672296526986904004264863726741575010822770498841422}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{17} - \frac{37451076670906903440790762788693219852835362044289353625732121887708179365713}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{16} + \frac{4081780023634790315135483137095700681394789068153973955072311930493518558872}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{15} + \frac{4938462151612733992698151283492417209957084531473931949195488548995515822552}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{14} - \frac{441346886343181247437087544854989821495884637822572178094086033906802668995}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{13} - \frac{43907902071603764454560103787165311502763891488839779393216126017433033201565}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{12} - \frac{6825711084670875264748299990082136799012738472285986682841170977500236739066}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{11} + \frac{33130618406313334891041475122450529939925604463874734023430938262839842628393}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{10} + \frac{1623260690558116128439874460320945887697894235940568782672876392988611452725}{12933883639973154117214512251021654587689681208246054246307644650892822701251} a^{9} + \frac{17497662320787504698894128731643627252988550661089564526479310408142642948457}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{8} - \frac{14033662058887721508414900571762249913874184414345344481294827783051362552389}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{7} + \frac{42163587673036686247721238580211840321895886714795654643533750063261983420579}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{6} + \frac{15526039923242539637415853821158812247128686429202409597861770872317271434521}{181074370959624157641003171514303164227655536915444759448307025112499517817514} a^{5} - \frac{9661517292059251355183331046044041233044680115032347972525979111824552900316}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{4} + \frac{6322377475860559752613387240423171806830935314861759516608508729845866343137}{12933883639973154117214512251021654587689681208246054246307644650892822701251} a^{3} + \frac{12362071571478360842149135409844776384887241388045130653978299130236132589417}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a^{2} - \frac{44516681511418578796615310373262397822135668154503925805294230268947535797674}{90537185479812078820501585757151582113827768457722379724153512556249758908757} a + \frac{936383120198734072553179490869650399308108052885753107581789468096170030175}{90537185479812078820501585757151582113827768457722379724153512556249758908757}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-295}) \), \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-59})\), 5.1.50000.1, 10.0.8936553737500000000.1, 10.0.1787310747500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |