Normalized defining polynomial
\( x^{20} - 4 x^{19} + 19 x^{18} - 57 x^{17} + 133 x^{16} - 190 x^{15} + 171 x^{14} + 532 x^{13} + \cdots + 225 \)
Invariants
Degree: | $20$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(79836369265591620072268522842253\)
\(\medspace = 7^{9}\cdot 19^{19}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(39.36\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{1/2}19^{19/20}\approx 43.38753139294459$ | ||
Ramified primes: |
\(7\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{133}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{8}-\frac{2}{9}a^{7}+\frac{1}{9}a^{6}+\frac{1}{9}a^{5}+\frac{4}{9}a^{4}-\frac{1}{9}a^{2}-\frac{2}{9}a+\frac{1}{3}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{1}{9}a^{8}-\frac{1}{9}a^{7}+\frac{2}{9}a^{6}-\frac{4}{9}a^{5}+\frac{4}{9}a^{4}-\frac{1}{9}a^{3}-\frac{1}{3}a^{2}+\frac{1}{9}a+\frac{1}{3}$, $\frac{1}{45}a^{13}-\frac{1}{45}a^{12}-\frac{1}{45}a^{11}-\frac{4}{45}a^{10}+\frac{1}{45}a^{9}+\frac{1}{15}a^{8}-\frac{4}{15}a^{7}-\frac{1}{15}a^{6}+\frac{11}{45}a^{5}-\frac{11}{45}a^{4}+\frac{19}{45}a^{3}-\frac{14}{45}a^{2}+\frac{11}{45}a+\frac{1}{3}$, $\frac{1}{405}a^{14}+\frac{2}{405}a^{13}+\frac{16}{405}a^{12}+\frac{1}{135}a^{11}-\frac{56}{405}a^{10}-\frac{4}{405}a^{9}+\frac{32}{405}a^{8}+\frac{56}{405}a^{7}-\frac{83}{405}a^{6}-\frac{31}{135}a^{5}-\frac{29}{405}a^{4}+\frac{113}{405}a^{3}+\frac{4}{405}a^{2}-\frac{19}{135}a+\frac{2}{9}$, $\frac{1}{405}a^{15}+\frac{1}{135}a^{13}-\frac{4}{81}a^{12}-\frac{8}{405}a^{11}-\frac{4}{45}a^{10}+\frac{31}{405}a^{9}+\frac{2}{81}a^{8}-\frac{59}{135}a^{7}+\frac{29}{81}a^{6}+\frac{103}{405}a^{5}+\frac{1}{9}a^{4}+\frac{4}{135}a^{3}+\frac{151}{405}a^{2}+\frac{1}{27}a-\frac{4}{9}$, $\frac{1}{3645}a^{16}-\frac{4}{3645}a^{15}-\frac{4}{3645}a^{14}-\frac{19}{3645}a^{13}+\frac{113}{3645}a^{12}-\frac{7}{3645}a^{11}+\frac{26}{405}a^{10}-\frac{149}{3645}a^{9}-\frac{5}{81}a^{8}+\frac{1352}{3645}a^{7}+\frac{293}{3645}a^{6}-\frac{634}{3645}a^{5}-\frac{712}{3645}a^{4}-\frac{260}{729}a^{3}-\frac{343}{729}a^{2}-\frac{448}{1215}a+\frac{35}{81}$, $\frac{1}{18225}a^{17}+\frac{1}{18225}a^{16}-\frac{1}{1215}a^{15}-\frac{7}{6075}a^{14}-\frac{2}{225}a^{13}+\frac{11}{2025}a^{12}+\frac{829}{18225}a^{11}+\frac{2281}{18225}a^{10}+\frac{1829}{18225}a^{9}+\frac{2594}{18225}a^{8}-\frac{2542}{6075}a^{7}-\frac{758}{6075}a^{6}+\frac{1616}{6075}a^{5}+\frac{104}{2025}a^{4}-\frac{1004}{3645}a^{3}-\frac{3061}{18225}a^{2}+\frac{1822}{6075}a-\frac{14}{405}$, $\frac{1}{3444525}a^{18}+\frac{2}{137781}a^{17}-\frac{32}{1148175}a^{16}-\frac{1406}{3444525}a^{15}-\frac{1166}{3444525}a^{14}-\frac{26069}{3444525}a^{13}+\frac{29644}{688905}a^{12}+\frac{11818}{382725}a^{11}-\frac{12248}{382725}a^{10}-\frac{9832}{229635}a^{9}-\frac{112247}{688905}a^{8}-\frac{15938}{3444525}a^{7}-\frac{225044}{492075}a^{6}+\frac{1208308}{3444525}a^{5}+\frac{328028}{1148175}a^{4}+\frac{208262}{492075}a^{3}-\frac{233873}{3444525}a^{2}-\frac{352012}{1148175}a+\frac{1559}{76545}$, $\frac{1}{4837680358875}a^{19}+\frac{97891}{691097194125}a^{18}+\frac{114807841}{4837680358875}a^{17}-\frac{568818356}{4837680358875}a^{16}-\frac{146154166}{1612560119625}a^{15}+\frac{15889834}{19908149625}a^{14}+\frac{2357983139}{284569432875}a^{13}+\frac{7665323546}{967536071775}a^{12}-\frac{564659}{131262525}a^{11}+\frac{158815591006}{1612560119625}a^{10}+\frac{49001051021}{372129258375}a^{9}-\frac{37062663983}{967536071775}a^{8}-\frac{25517744992}{1612560119625}a^{7}-\frac{223976202127}{1612560119625}a^{6}-\frac{160168128922}{691097194125}a^{5}+\frac{2386723134464}{4837680358875}a^{4}-\frac{5024402507}{74425851675}a^{3}+\frac{66038207548}{284569432875}a^{2}+\frac{23062021768}{64502404785}a+\frac{1922768231}{21500801595}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1752618533}{4837680358875}a^{19}-\frac{5702126539}{4837680358875}a^{18}+\frac{20899938308}{4837680358875}a^{17}-\frac{55628022508}{4837680358875}a^{16}+\frac{25272220292}{1612560119625}a^{15}+\frac{11402979592}{1612560119625}a^{14}-\frac{1697812814}{40652776125}a^{13}+\frac{177008910277}{967536071775}a^{12}-\frac{334554002}{2756513025}a^{11}-\frac{110484184777}{1612560119625}a^{10}+\frac{209543849008}{372129258375}a^{9}-\frac{247500669818}{193507214355}a^{8}+\frac{178759969664}{1612560119625}a^{7}+\frac{580823227979}{1612560119625}a^{6}-\frac{15357768298997}{4837680358875}a^{5}+\frac{13856257866352}{4837680358875}a^{4}-\frac{157665996682}{74425851675}a^{3}+\frac{226486799009}{284569432875}a^{2}-\frac{125679286799}{322512023925}a+\frac{1447247251}{21500801595}$, $\frac{102265876}{967536071775}a^{19}-\frac{12779027}{38701442871}a^{18}+\frac{40469986}{46073146275}a^{17}-\frac{7874948644}{967536071775}a^{16}+\frac{27902615651}{967536071775}a^{15}-\frac{11683594543}{138219438825}a^{14}+\frac{1734869476}{11382777315}a^{13}-\frac{13563874162}{46073146275}a^{12}+\frac{244616171}{8269539075}a^{11}-\frac{2916595778}{64502404785}a^{10}-\frac{21305289706}{14885170335}a^{9}+\frac{158724490304}{138219438825}a^{8}-\frac{2678945932462}{967536071775}a^{7}+\frac{1106970416072}{967536071775}a^{6}-\frac{328318354393}{322512023925}a^{5}+\frac{941024539246}{967536071775}a^{4}-\frac{13084568074}{74425851675}a^{3}+\frac{26825366521}{18971295525}a^{2}-\frac{14172065134}{21500801595}a-\frac{5707901}{1433386773}$, $\frac{25378298453}{4837680358875}a^{19}-\frac{58315625309}{4837680358875}a^{18}+\frac{4983577811}{76788577125}a^{17}-\frac{644606575303}{4837680358875}a^{16}+\frac{1006766286026}{4837680358875}a^{15}+\frac{90253118873}{691097194125}a^{14}-\frac{185177222563}{284569432875}a^{13}+\frac{187739824634}{46073146275}a^{12}-\frac{16119143072}{8269539075}a^{11}+\frac{12386491367738}{1612560119625}a^{10}+\frac{5099944220323}{372129258375}a^{9}-\frac{1460695468064}{138219438825}a^{8}+\frac{187154094347912}{4837680358875}a^{7}-\frac{74143935290938}{4837680358875}a^{6}-\frac{5888057591618}{537520039875}a^{5}+\frac{163240334163757}{4837680358875}a^{4}-\frac{4515060199313}{74425851675}a^{3}+\frac{1285724247421}{31618825875}a^{2}-\frac{218104962032}{11944889775}a+\frac{190869728177}{7166933865}$, $\frac{13292134187}{4837680358875}a^{19}-\frac{51030322606}{4837680358875}a^{18}+\frac{246002403422}{4837680358875}a^{17}-\frac{731599325692}{4837680358875}a^{16}+\frac{189768160261}{537520039875}a^{15}-\frac{822662421862}{1612560119625}a^{14}+\frac{145824814963}{284569432875}a^{13}+\frac{1246878876391}{967536071775}a^{12}-\frac{2817626618}{918837675}a^{11}+\frac{14830653207107}{1612560119625}a^{10}-\frac{2986361353883}{372129258375}a^{9}+\frac{7555357655498}{967536071775}a^{8}+\frac{582182888491}{76788577125}a^{7}-\frac{11866315951538}{537520039875}a^{6}+\frac{151702028008792}{4837680358875}a^{5}-\frac{24022510170536}{691097194125}a^{4}+\frac{1763475359981}{74425851675}a^{3}-\frac{3875745754939}{284569432875}a^{2}+\frac{3486515234737}{322512023925}a-\frac{4222467281}{3071543085}$, $\frac{125131642}{94856477625}a^{19}+\frac{600666151}{94856477625}a^{18}-\frac{901768004}{31618825875}a^{17}+\frac{8674543382}{94856477625}a^{16}-\frac{20768550289}{94856477625}a^{15}+\frac{31983836681}{94856477625}a^{14}-\frac{28273780736}{94856477625}a^{13}-\frac{4522369463}{6323765175}a^{12}+\frac{134107328}{54049275}a^{11}-\frac{183480293002}{31618825875}a^{10}+\frac{49489091998}{7296652125}a^{9}-\frac{76018852046}{18971295525}a^{8}-\frac{74447252419}{13550925375}a^{7}+\frac{1795517568722}{94856477625}a^{6}-\frac{825127045504}{31618825875}a^{5}+\frac{349818660931}{13550925375}a^{4}-\frac{23620397918}{1459330425}a^{3}+\frac{206997046526}{31618825875}a^{2}-\frac{3538990471}{2107921725}a+\frac{893239}{20075445}$, $\frac{59368864}{46073146275}a^{19}+\frac{1062569168}{193507214355}a^{18}-\frac{24925994869}{967536071775}a^{17}+\frac{8543268854}{107504007975}a^{16}-\frac{182920351676}{967536071775}a^{15}+\frac{275181493429}{967536071775}a^{14}-\frac{15496949347}{56913886575}a^{13}-\frac{125086471112}{193507214355}a^{12}+\frac{15767848108}{8269539075}a^{11}-\frac{183239889109}{35834669325}a^{10}+\frac{132871221482}{24808617225}a^{9}-\frac{172549605304}{38701442871}a^{8}-\frac{786703315423}{193507214355}a^{7}+\frac{387726074303}{27643887765}a^{6}-\frac{4184744269753}{193507214355}a^{5}+\frac{841241493908}{35834669325}a^{4}-\frac{191532743143}{10632264525}a^{3}+\frac{595440123011}{56913886575}a^{2}-\frac{2196772371076}{322512023925}a+\frac{44483853377}{21500801595}$, $\frac{19148254}{13110244875}a^{19}+\frac{77661697}{13110244875}a^{18}-\frac{124388338}{4370081625}a^{17}+\frac{1125974879}{13110244875}a^{16}-\frac{2663985328}{13110244875}a^{15}+\frac{3910191032}{13110244875}a^{14}-\frac{214245721}{771190875}a^{13}-\frac{678120383}{874016325}a^{12}+\frac{135916616}{67232025}a^{11}-\frac{8148778843}{1456693875}a^{10}+\frac{5122250941}{1008480375}a^{9}-\frac{11143869083}{2622048975}a^{8}-\frac{10598010133}{1872892125}a^{7}+\frac{197164494614}{13110244875}a^{6}-\frac{91513491733}{4370081625}a^{5}+\frac{41335171132}{1872892125}a^{4}-\frac{117109709}{8067843}a^{3}+\frac{2267178101}{257063625}a^{2}-\frac{1976713286}{291338775}a+\frac{759709}{924885}$, $\frac{15431854}{15357715425}a^{19}+\frac{4979513054}{967536071775}a^{18}-\frac{21871074122}{967536071775}a^{17}+\frac{24383785973}{322512023925}a^{16}-\frac{175427448772}{967536071775}a^{15}+\frac{289091489408}{967536071775}a^{14}-\frac{16462857464}{56913886575}a^{13}-\frac{17126534636}{38701442871}a^{12}+\frac{16493105948}{8269539075}a^{11}-\frac{483007032778}{107504007975}a^{10}+\frac{163360002206}{24808617225}a^{9}-\frac{126813783623}{38701442871}a^{8}-\frac{772920542977}{967536071775}a^{7}+\frac{2331437952134}{138219438825}a^{6}-\frac{17492690531098}{967536071775}a^{5}+\frac{8781180840598}{322512023925}a^{4}-\frac{158576830973}{10632264525}a^{3}+\frac{630868411672}{56913886575}a^{2}-\frac{1633582828466}{322512023925}a+\frac{27463497457}{21500801595}$, $\frac{5344863577}{1612560119625}a^{19}+\frac{10811078509}{691097194125}a^{18}-\frac{347834098666}{4837680358875}a^{17}+\frac{124074094409}{537520039875}a^{16}-\frac{2712770218322}{4837680358875}a^{15}+\frac{4316849366038}{4837680358875}a^{14}-\frac{249433382434}{284569432875}a^{13}-\frac{1563386938052}{967536071775}a^{12}+\frac{7078089518}{1181362725}a^{11}-\frac{2705194351949}{179173346625}a^{10}+\frac{2272147070813}{124043086125}a^{9}-\frac{12823626364658}{967536071775}a^{8}-\frac{53317228960004}{4837680358875}a^{7}+\frac{228094372725211}{4837680358875}a^{6}-\frac{48621116430158}{691097194125}a^{5}+\frac{13252812570668}{179173346625}a^{4}-\frac{3712552880942}{74425851675}a^{3}+\frac{5820458531807}{284569432875}a^{2}-\frac{2710919941157}{322512023925}a+\frac{43840818208}{21500801595}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 259320806.1491311 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 259320806.1491311 \cdot 1}{2\cdot\sqrt{79836369265591620072268522842253}}\cr\approx \mathstrut & 1.39157193641186 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 40 |
The 13 conjugacy class representatives for $D_{20}$ |
Character table for $D_{20}$ |
Intermediate fields
\(\Q(\sqrt{-19}) \), 4.0.48013.1, 5.1.6385729.1, 10.0.774773162367379.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 20 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $20$ | ${\href{/padicField/3.2.0.1}{2} }^{10}$ | ${\href{/padicField/5.2.0.1}{2} }^{9}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/11.10.0.1}{10} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{10}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/23.5.0.1}{5} }^{4}$ | $20$ | ${\href{/padicField/31.2.0.1}{2} }^{10}$ | ${\href{/padicField/37.4.0.1}{4} }^{5}$ | ${\href{/padicField/41.2.0.1}{2} }^{10}$ | ${\href{/padicField/43.5.0.1}{5} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $20$ | ${\href{/padicField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\)
| 7.2.0.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(19\)
| 19.20.19.1 | $x^{20} + 19$ | $20$ | $1$ | $19$ | $D_{20}$ | $[\ ]_{20}^{2}$ |