Properties

Label 20.0.79404876890...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{28}\cdot 3^{12}\cdot 5^{12}\cdot 691^{4}$
Root discriminant $49.54$
Ramified primes $2, 3, 5, 691$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1025

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6400, 0, 32000, 0, 64960, 0, 74080, 0, 55136, 0, 27824, 0, 9356, 0, 2032, 0, 277, 0, 23, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 23*x^18 + 277*x^16 + 2032*x^14 + 9356*x^12 + 27824*x^10 + 55136*x^8 + 74080*x^6 + 64960*x^4 + 32000*x^2 + 6400)
 
gp: K = bnfinit(x^20 + 23*x^18 + 277*x^16 + 2032*x^14 + 9356*x^12 + 27824*x^10 + 55136*x^8 + 74080*x^6 + 64960*x^4 + 32000*x^2 + 6400, 1)
 

Normalized defining polynomial

\( x^{20} + 23 x^{18} + 277 x^{16} + 2032 x^{14} + 9356 x^{12} + 27824 x^{10} + 55136 x^{8} + 74080 x^{6} + 64960 x^{4} + 32000 x^{2} + 6400 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7940487689086907252736000000000000=2^{28}\cdot 3^{12}\cdot 5^{12}\cdot 691^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 691$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{96} a^{14} - \frac{1}{96} a^{12} + \frac{1}{96} a^{10} - \frac{1}{8} a^{8} - \frac{1}{3} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{96} a^{15} - \frac{1}{96} a^{13} + \frac{1}{96} a^{11} - \frac{1}{8} a^{9} - \frac{1}{3} a^{5} - \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{960} a^{16} + \frac{1}{320} a^{14} - \frac{1}{320} a^{12} - \frac{1}{120} a^{10} + \frac{1}{10} a^{8} - \frac{11}{60} a^{6} - \frac{2}{5} a^{4} - \frac{1}{3}$, $\frac{1}{960} a^{17} + \frac{1}{320} a^{15} - \frac{1}{320} a^{13} - \frac{1}{120} a^{11} + \frac{1}{10} a^{9} - \frac{11}{60} a^{7} - \frac{2}{5} a^{5} - \frac{1}{3} a$, $\frac{1}{589440} a^{18} + \frac{97}{589440} a^{16} - \frac{1141}{589440} a^{14} + \frac{233}{58944} a^{12} + \frac{1947}{49120} a^{10} - \frac{833}{9210} a^{8} + \frac{4627}{36840} a^{6} - \frac{62}{4605} a^{4} - \frac{527}{1842} a^{2} - \frac{36}{307}$, $\frac{1}{2947200} a^{19} - \frac{517}{2947200} a^{17} - \frac{3041}{982400} a^{15} + \frac{1289}{368400} a^{13} + \frac{11977}{368400} a^{11} + \frac{10307}{92100} a^{9} - \frac{2911}{46050} a^{7} + \frac{2419}{6140} a^{5} + \frac{1732}{4605} a^{3} - \frac{83}{921} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 581009338.821 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1025:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 216 conjugacy class representatives for t20n1025 are not computed
Character table for t20n1025 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.5438807015625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.6.6.5$x^{6} + 6 x^{3} + 9 x^{2} + 9$$3$$2$$6$$S_3^2$$[3/2, 3/2]_{2}^{2}$
3.6.6.5$x^{6} + 6 x^{3} + 9 x^{2} + 9$$3$$2$$6$$S_3^2$$[3/2, 3/2]_{2}^{2}$
$5$5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
691Data not computed