Normalized defining polynomial
\( x^{20} - 2 x^{19} + x^{18} - 8 x^{17} + 26 x^{16} - 35 x^{15} + 108 x^{14} - 230 x^{13} + 359 x^{12} - 619 x^{11} + 1059 x^{10} - 1756 x^{9} + 2561 x^{8} - 3379 x^{7} + 4120 x^{6} - 4105 x^{5} + 3313 x^{4} - 1833 x^{3} + 828 x^{2} - 351 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7935691828389105528301401=3^{10}\cdot 103^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{15} a^{13} + \frac{1}{5} a^{12} - \frac{4}{15} a^{11} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{7}{15} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{4}{15} a^{3} + \frac{1}{5} a^{2} + \frac{7}{15} a - \frac{1}{5}$, $\frac{1}{15} a^{14} + \frac{2}{15} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{4}{15} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{4}{15} a^{4} - \frac{2}{15} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{15} + \frac{2}{5} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{2}{5} a^{3} - \frac{1}{3} a + \frac{2}{5}$, $\frac{1}{45} a^{16} - \frac{1}{45} a^{15} + \frac{1}{45} a^{14} + \frac{1}{45} a^{13} + \frac{16}{45} a^{12} + \frac{4}{15} a^{11} + \frac{22}{45} a^{10} - \frac{2}{9} a^{9} - \frac{16}{45} a^{8} + \frac{4}{15} a^{7} - \frac{1}{45} a^{6} - \frac{14}{45} a^{5} + \frac{17}{45} a^{4} - \frac{1}{45} a^{3} + \frac{8}{45} a^{2} + \frac{4}{15} a + \frac{2}{5}$, $\frac{1}{45} a^{17} - \frac{1}{45} a^{14} - \frac{1}{45} a^{13} + \frac{13}{45} a^{12} - \frac{4}{9} a^{11} + \frac{7}{15} a^{10} - \frac{17}{45} a^{9} + \frac{11}{45} a^{8} - \frac{16}{45} a^{7} - \frac{2}{15} a^{6} + \frac{7}{15} a^{5} - \frac{17}{45} a^{4} - \frac{11}{45} a^{3} + \frac{17}{45} a^{2} + \frac{7}{15} a$, $\frac{1}{211725} a^{18} - \frac{108}{23525} a^{17} + \frac{59}{211725} a^{16} - \frac{38}{70575} a^{15} + \frac{763}{211725} a^{14} - \frac{209}{70575} a^{13} + \frac{13024}{70575} a^{12} - \frac{34192}{70575} a^{11} + \frac{5381}{14115} a^{10} - \frac{16279}{70575} a^{9} + \frac{9653}{70575} a^{8} + \frac{31606}{70575} a^{7} - \frac{59222}{211725} a^{6} - \frac{5092}{14115} a^{5} - \frac{95266}{211725} a^{4} + \frac{746}{4705} a^{3} + \frac{18263}{42345} a^{2} + \frac{10598}{23525} a + \frac{1402}{23525}$, $\frac{1}{46346922183209310225} a^{19} + \frac{97813867331131}{46346922183209310225} a^{18} - \frac{171324230973836072}{46346922183209310225} a^{17} + \frac{292416488968100698}{46346922183209310225} a^{16} - \frac{1426720111377446584}{46346922183209310225} a^{15} + \frac{1060954167381284707}{46346922183209310225} a^{14} - \frac{402202232019242473}{15448974061069770075} a^{13} + \frac{1627099606191312194}{9269384436641862045} a^{12} + \frac{7466979644993272637}{46346922183209310225} a^{11} - \frac{13334493211706875597}{46346922183209310225} a^{10} - \frac{483774090584182146}{1716552673452196675} a^{9} - \frac{2692613804506074737}{9269384436641862045} a^{8} + \frac{22240529300694180737}{46346922183209310225} a^{7} + \frac{7017832831469383409}{46346922183209310225} a^{6} + \frac{7697007007927846954}{46346922183209310225} a^{5} - \frac{20318561107488464308}{46346922183209310225} a^{4} + \frac{287540069107498621}{1853876887328372409} a^{3} - \frac{164515035435150134}{1716552673452196675} a^{2} + \frac{2564571920003835541}{5149658020356590025} a + \frac{821982136613316587}{1716552673452196675}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{740936717620306}{49252839727108725} a^{19} + \frac{1131241806051221}{49252839727108725} a^{18} - \frac{256037258732932}{49252839727108725} a^{17} + \frac{1173138861135319}{9850567945421745} a^{16} - \frac{16495279595571029}{49252839727108725} a^{15} + \frac{18526342157966534}{49252839727108725} a^{14} - \frac{4817673065088434}{3283522648473915} a^{13} + \frac{137291307444535049}{49252839727108725} a^{12} - \frac{205751485369155344}{49252839727108725} a^{11} + \frac{369054225223860652}{49252839727108725} a^{10} - \frac{207564361186390564}{16417613242369575} a^{9} + \frac{1029300758390361373}{49252839727108725} a^{8} - \frac{1449127045179420116}{49252839727108725} a^{7} + \frac{1881344828746211557}{49252839727108725} a^{6} - \frac{2250482827550976964}{49252839727108725} a^{5} + \frac{2090359118592799051}{49252839727108725} a^{4} - \frac{64051751454156340}{1970113589084349} a^{3} + \frac{240893505545010541}{16417613242369575} a^{2} - \frac{8629029729319543}{1094507549491305} a + \frac{5848002379526821}{1824179249152175} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60789.2486151 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-103}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{309}) \), \(\Q(\sqrt{-3}, \sqrt{-103})\), 5.1.10609.1 x5, 10.0.11592740743.1, 10.0.27349864083.1 x5, 10.2.2817036000549.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $103$ | 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |