Normalized defining polynomial
\( x^{20} + 135 x^{18} + 8985 x^{16} + 393684 x^{14} + 12476160 x^{12} + 291632342 x^{10} + 4957175974 x^{8} + 59271734905 x^{6} + 471001418299 x^{4} + 2230354203015 x^{2} + 4762385279521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7848773792186191578606179311298560000000000=2^{20}\cdot 5^{10}\cdot 11^{18}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2860=2^{2}\cdot 5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2860}(1,·)$, $\chi_{2860}(131,·)$, $\chi_{2860}(391,·)$, $\chi_{2860}(521,·)$, $\chi_{2860}(651,·)$, $\chi_{2860}(909,·)$, $\chi_{2860}(1039,·)$, $\chi_{2860}(1299,·)$, $\chi_{2860}(1301,·)$, $\chi_{2860}(1689,·)$, $\chi_{2860}(1691,·)$, $\chi_{2860}(1949,·)$, $\chi_{2860}(1819,·)$, $\chi_{2860}(2341,·)$, $\chi_{2860}(2599,·)$, $\chi_{2860}(129,·)$, $\chi_{2860}(2601,·)$, $\chi_{2860}(2471,·)$, $\chi_{2860}(779,·)$, $\chi_{2860}(1429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{8501486473992484047765221018716880641} a^{18} - \frac{292270448023843479406906021731905504}{8501486473992484047765221018716880641} a^{16} + \frac{470687180447642117612137577983158124}{8501486473992484047765221018716880641} a^{14} + \frac{3104207345527896880565010513416541090}{8501486473992484047765221018716880641} a^{12} + \frac{367102840025869815218597516948573692}{8501486473992484047765221018716880641} a^{10} - \frac{1832174940263211500770258133503864940}{8501486473992484047765221018716880641} a^{8} - \frac{1911325521407734953414421987256930876}{8501486473992484047765221018716880641} a^{6} + \frac{2426035257864116541061361936728738384}{8501486473992484047765221018716880641} a^{4} + \frac{2201100179078002025799340275991448115}{8501486473992484047765221018716880641} a^{2} - \frac{3260019493407479814106419099862151460}{8501486473992484047765221018716880641}$, $\frac{1}{18552700415842584020113516411714642737167249} a^{19} + \frac{4431135986217440519048661327248572078915875}{18552700415842584020113516411714642737167249} a^{17} + \frac{884274084793034683386369311178395606151098}{18552700415842584020113516411714642737167249} a^{15} - \frac{3098652691779331027768778252775490107013154}{18552700415842584020113516411714642737167249} a^{13} - \frac{8115263576376165471605431809239055804905678}{18552700415842584020113516411714642737167249} a^{11} - \frac{7766135230626496418297173466519060120060363}{18552700415842584020113516411714642737167249} a^{9} - \frac{2630837909621339551220187649990038272572172}{18552700415842584020113516411714642737167249} a^{7} + \frac{6503452545937080326007884305817938647729282}{18552700415842584020113516411714642737167249} a^{5} - \frac{6790934185406173224448546159084655963298839}{18552700415842584020113516411714642737167249} a^{3} - \frac{6049916079506764830390978339968593632706290}{18552700415842584020113516411714642737167249} a$
Class group and class number
$C_{2}\times C_{21586840}$, which has order $43173680$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.4907663525 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-715}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-65}) \), \(\Q(\sqrt{11}, \sqrt{-65})\), \(\Q(\zeta_{11})^+\), 10.0.2735904600107696875.1, \(\Q(\zeta_{44})^+\), 10.0.254687846410025600000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 13 | Data not computed | ||||||