Normalized defining polynomial
\( x^{20} - 2 x^{19} - 41 x^{18} + 84 x^{17} + 2854 x^{16} - 5792 x^{15} - 66026 x^{14} + 137844 x^{13} + 2172498 x^{12} - 4482840 x^{11} - 26650514 x^{10} + 57316392 x^{9} + 498877289 x^{8} - 985657428 x^{7} - 2332001357 x^{6} + 5958300606 x^{5} + 25037292164 x^{4} - 91720108968 x^{3} + 103548492952 x^{2} - 40033619716 x + 165766539709 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7848773792186191578606179311298560000000000=2^{20}\cdot 5^{10}\cdot 11^{18}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2860=2^{2}\cdot 5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2860}(1,·)$, $\chi_{2860}(1481,·)$, $\chi_{2860}(779,·)$, $\chi_{2860}(79,·)$, $\chi_{2860}(2001,·)$, $\chi_{2860}(1299,·)$, $\chi_{2860}(1301,·)$, $\chi_{2860}(2521,·)$, $\chi_{2860}(1039,·)$, $\chi_{2860}(1119,·)$, $\chi_{2860}(1819,·)$, $\chi_{2860}(2341,·)$, $\chi_{2860}(2599,·)$, $\chi_{2860}(2601,·)$, $\chi_{2860}(1899,·)$, $\chi_{2860}(2419,·)$, $\chi_{2860}(521,·)$, $\chi_{2860}(2679,·)$, $\chi_{2860}(701,·)$, $\chi_{2860}(2261,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{1}{11}$, $\frac{1}{11} a^{12} + \frac{1}{11} a$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{2}$, $\frac{1}{253} a^{14} - \frac{1}{253} a^{13} - \frac{8}{253} a^{12} + \frac{7}{253} a^{11} + \frac{1}{253} a^{3} - \frac{1}{253} a^{2} - \frac{8}{253} a + \frac{7}{253}$, $\frac{1}{8349} a^{15} + \frac{5}{2783} a^{14} - \frac{346}{8349} a^{13} - \frac{29}{8349} a^{12} + \frac{89}{8349} a^{11} - \frac{1}{33} a^{10} + \frac{7}{33} a^{9} + \frac{8}{33} a^{8} + \frac{13}{33} a^{7} - \frac{10}{33} a^{6} + \frac{13}{33} a^{5} + \frac{1181}{2783} a^{4} + \frac{268}{8349} a^{3} + \frac{3955}{8349} a^{2} + \frac{4019}{8349} a + \frac{2872}{8349}$, $\frac{1}{1257668338047} a^{16} + \frac{71370832}{1257668338047} a^{15} + \frac{2053683059}{1257668338047} a^{14} + \frac{11870155084}{419222779349} a^{13} + \frac{2189334398}{419222779349} a^{12} + \frac{32271646375}{1257668338047} a^{11} - \frac{5058205}{1657007033} a^{10} + \frac{726503915}{1657007033} a^{9} - \frac{438857918}{1657007033} a^{8} - \frac{324665296}{1657007033} a^{7} - \frac{382649970}{1657007033} a^{6} - \frac{54314521205}{1257668338047} a^{5} + \frac{616268568217}{1257668338047} a^{4} + \frac{45356218610}{1257668338047} a^{3} - \frac{83219477972}{419222779349} a^{2} - \frac{198444441483}{419222779349} a + \frac{20789211268}{1257668338047}$, $\frac{1}{1257668338047} a^{17} - \frac{36230099}{1257668338047} a^{15} + \frac{2409318520}{1257668338047} a^{14} + \frac{14936537524}{419222779349} a^{13} + \frac{27166753414}{1257668338047} a^{12} + \frac{7299140921}{1257668338047} a^{11} + \frac{66877828}{1657007033} a^{10} + \frac{554868307}{1657007033} a^{9} + \frac{489621417}{1657007033} a^{8} + \frac{373823402}{1657007033} a^{7} - \frac{474653404235}{1257668338047} a^{6} - \frac{720634416}{1657007033} a^{5} + \frac{99470234959}{1257668338047} a^{4} - \frac{579669058118}{1257668338047} a^{3} + \frac{79764624012}{419222779349} a^{2} + \frac{548771098423}{1257668338047} a - \frac{136979652562}{1257668338047}$, $\frac{1}{28926371775081} a^{18} - \frac{1}{9642123925027} a^{16} + \frac{116218595}{28926371775081} a^{15} + \frac{29005566016}{28926371775081} a^{14} + \frac{1030259154713}{28926371775081} a^{13} - \frac{46956989209}{2629670161371} a^{12} + \frac{349206404793}{9642123925027} a^{11} + \frac{1366048933}{114333485277} a^{10} + \frac{39047889464}{114333485277} a^{9} - \frac{37706877254}{114333485277} a^{8} + \frac{1895408419568}{9642123925027} a^{7} + \frac{11091846880}{114333485277} a^{6} + \frac{3771717418202}{28926371775081} a^{5} + \frac{1390551755244}{9642123925027} a^{4} - \frac{2461613651769}{9642123925027} a^{3} - \frac{1765522021990}{9642123925027} a^{2} + \frac{109134147854}{876556720457} a - \frac{4132753690823}{28926371775081}$, $\frac{1}{2399504182745556677555731780868654937864483573161861024686461} a^{19} + \frac{7186370096687750418930560481160469918918843773}{799834727581852225851910593622884979288161191053953674895487} a^{18} + \frac{298351877926460879755614311373485121696703675982}{799834727581852225851910593622884979288161191053953674895487} a^{17} - \frac{6899746814235807724347354276991639742547067723}{104326268815024203371988338298637171211499285789646131508107} a^{16} + \frac{38443644452426104731417222730347533907314041585746609879}{799834727581852225851910593622884979288161191053953674895487} a^{15} + \frac{668218515495502685187967234976083419279554171260654466370}{799834727581852225851910593622884979288161191053953674895487} a^{14} + \frac{73590064606608098451519354715632835135463089767845193978403}{2399504182745556677555731780868654937864483573161861024686461} a^{13} - \frac{32210848591243359680667222990941773006583983091238073203685}{799834727581852225851910593622884979288161191053953674895487} a^{12} - \frac{11932135761577537152892546112170672535828183932019546325124}{799834727581852225851910593622884979288161191053953674895487} a^{11} - \frac{184261090398711434419470210813332617316703681935861607514}{9484206255911291215635303481694288291954480526331466500737} a^{10} - \frac{4223981618734496357098001165519017561770848717851440462749}{9484206255911291215635303481694288291954480526331466500737} a^{9} + \frac{340630191542312582493100165672240236653130904327233012649117}{799834727581852225851910593622884979288161191053953674895487} a^{8} - \frac{336420746192496201786667056110609185005745100774060011072439}{2399504182745556677555731780868654937864483573161861024686461} a^{7} + \frac{715555292959470192796679614518753543721220292859038166036112}{2399504182745556677555731780868654937864483573161861024686461} a^{6} - \frac{15476696677058289517143970199456774951628781036127169791672}{104326268815024203371988338298637171211499285789646131508107} a^{5} + \frac{898646437520616064401012287341241030906032974090230021009642}{2399504182745556677555731780868654937864483573161861024686461} a^{4} + \frac{381604932911597332914003708383060660721971922204121335008218}{2399504182745556677555731780868654937864483573161861024686461} a^{3} + \frac{315468607232463642745030612799994183392863593626965371101386}{799834727581852225851910593622884979288161191053953674895487} a^{2} + \frac{1197529333912252568559863390296286288580197548024091552035837}{2399504182745556677555731780868654937864483573161861024686461} a - \frac{329715104781029618729905835736216343000123298921695216948876}{2399504182745556677555731780868654937864483573161861024686461}$
Class group and class number
$C_{10}\times C_{156200}$, which has order $1562000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11184526.893275889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{-65}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{55}, \sqrt{-65})\), \(\Q(\zeta_{11})^+\), 10.0.875489472034463.1, 10.0.254687846410025600000.1, 10.10.7545432611200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $13$ | 13.10.5.2 | $x^{10} - 57122 x^{2} + 2227758$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 13.10.5.2 | $x^{10} - 57122 x^{2} + 2227758$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |