Normalized defining polynomial
\( x^{20} - 6 x^{19} + 57 x^{18} - 248 x^{17} + 2033 x^{16} - 7844 x^{15} + 54976 x^{14} - 181742 x^{13} + 1124878 x^{12} - 3183174 x^{11} + 18194876 x^{10} - 43438336 x^{9} + 230191550 x^{8} - 448347204 x^{7} + 2200421129 x^{6} - 3323353912 x^{5} + 14891005039 x^{4} - 15745676396 x^{3} + 62190491667 x^{2} - 35059541744 x + 116484273949 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7848304897073886403551554174576640000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(839,·)$, $\chi_{4620}(1609,·)$, $\chi_{4620}(3851,·)$, $\chi_{4620}(911,·)$, $\chi_{4620}(3359,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(71,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(4129,·)$, $\chi_{4620}(419,·)$, $\chi_{4620}(1189,·)$, $\chi_{4620}(1259,·)$, $\chi_{4620}(2029,·)$, $\chi_{4620}(4271,·)$, $\chi_{4620}(2099,·)$, $\chi_{4620}(2869,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(2171,·)$, $\chi_{4620}(2941,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{47} a^{15} + \frac{19}{47} a^{14} - \frac{5}{47} a^{13} - \frac{16}{47} a^{12} - \frac{3}{47} a^{11} - \frac{20}{47} a^{10} + \frac{12}{47} a^{9} - \frac{10}{47} a^{8} + \frac{19}{47} a^{7} + \frac{8}{47} a^{6} + \frac{11}{47} a^{5} + \frac{19}{47} a^{3} - \frac{7}{47} a^{2} + \frac{14}{47} a + \frac{11}{47}$, $\frac{1}{47} a^{16} + \frac{10}{47} a^{14} - \frac{15}{47} a^{13} + \frac{19}{47} a^{12} - \frac{10}{47} a^{11} + \frac{16}{47} a^{10} - \frac{3}{47} a^{9} + \frac{21}{47} a^{8} + \frac{23}{47} a^{7} - \frac{21}{47} a^{5} + \frac{19}{47} a^{4} + \frac{8}{47} a^{3} + \frac{6}{47} a^{2} - \frac{20}{47} a - \frac{21}{47}$, $\frac{1}{47} a^{17} - \frac{17}{47} a^{14} + \frac{22}{47} a^{13} + \frac{9}{47} a^{12} - \frac{1}{47} a^{11} + \frac{9}{47} a^{10} - \frac{5}{47} a^{9} - \frac{18}{47} a^{8} - \frac{2}{47} a^{7} - \frac{7}{47} a^{6} + \frac{3}{47} a^{5} + \frac{8}{47} a^{4} + \frac{4}{47} a^{3} + \frac{3}{47} a^{2} - \frac{20}{47} a - \frac{16}{47}$, $\frac{1}{46028486232806859832209431} a^{18} + \frac{206384742137446348424043}{46028486232806859832209431} a^{17} - \frac{119304569842732119955873}{46028486232806859832209431} a^{16} + \frac{315541415097104695561685}{46028486232806859832209431} a^{15} + \frac{13860183636485318698516739}{46028486232806859832209431} a^{14} + \frac{4519189871121442269074933}{46028486232806859832209431} a^{13} - \frac{664001442054279126458915}{46028486232806859832209431} a^{12} - \frac{21538250135896818666027593}{46028486232806859832209431} a^{11} - \frac{1359503400290545776075717}{46028486232806859832209431} a^{10} - \frac{20740824990680990333560003}{46028486232806859832209431} a^{9} - \frac{18962040808546457559989236}{46028486232806859832209431} a^{8} + \frac{387198215493347492534419}{979329494315039570898073} a^{7} + \frac{14710639914181888232808518}{46028486232806859832209431} a^{6} - \frac{1230025673367344221626693}{46028486232806859832209431} a^{5} + \frac{15378526073688787738152416}{46028486232806859832209431} a^{4} - \frac{2621856672546804162743550}{46028486232806859832209431} a^{3} + \frac{6728964452939485744694883}{46028486232806859832209431} a^{2} - \frac{22169639561909443794610918}{46028486232806859832209431} a - \frac{14631970404777506511117374}{46028486232806859832209431}$, $\frac{1}{338921050491194002048245144111950359982946342654278559417959} a^{19} - \frac{3552838746264766092252328159081858}{338921050491194002048245144111950359982946342654278559417959} a^{18} + \frac{583806110167611052851101992044050462014248435548165420865}{338921050491194002048245144111950359982946342654278559417959} a^{17} - \frac{3592390657336827456889450070852846516965722268362080854618}{338921050491194002048245144111950359982946342654278559417959} a^{16} + \frac{347236057155152630186612072705091808251204485662264518874}{338921050491194002048245144111950359982946342654278559417959} a^{15} + \frac{84971452728573405838945209419718163533626121247527538301839}{338921050491194002048245144111950359982946342654278559417959} a^{14} + \frac{73383090789897995380913110323633411733196840131510211597208}{338921050491194002048245144111950359982946342654278559417959} a^{13} + \frac{27919873407798153509358606331640219734443811287240776863283}{338921050491194002048245144111950359982946342654278559417959} a^{12} + \frac{1283885057732925926789960970279109279737523361963160274819}{3109367435699027541727019670751838164981159106919986783651} a^{11} - \frac{141769861053385412696527173258723270767914091629405985370957}{338921050491194002048245144111950359982946342654278559417959} a^{10} + \frac{106859445728964626826025458792624450921362401978751690375320}{338921050491194002048245144111950359982946342654278559417959} a^{9} - \frac{1050361870256492767173291728931428417984032896142777277323}{3109367435699027541727019670751838164981159106919986783651} a^{8} + \frac{36829448043168251146048471386010776893099586527846409242962}{338921050491194002048245144111950359982946342654278559417959} a^{7} - \frac{42411374310985085481118881121056066858394235539268701819619}{338921050491194002048245144111950359982946342654278559417959} a^{6} + \frac{31331955758810561164519206872922939481453325236273304907392}{338921050491194002048245144111950359982946342654278559417959} a^{5} - \frac{92093759349564001087813237681729433315014619176190297751515}{338921050491194002048245144111950359982946342654278559417959} a^{4} + \frac{17224063889204505875986188395753870455789342896273629739358}{338921050491194002048245144111950359982946342654278559417959} a^{3} - \frac{1907167990427852110120334285963523962649784117558186392152}{338921050491194002048245144111950359982946342654278559417959} a^{2} + \frac{69910119314205764292880945641460807413348224467777280892545}{338921050491194002048245144111950359982946342654278559417959} a + \frac{83651778315825605655743847096726943419656939483031490367871}{338921050491194002048245144111950359982946342654278559417959}$
Class group and class number
$C_{10}\times C_{530420}$, which has order $5304200$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1746210.0427691017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{3}, \sqrt{-35})\), \(\Q(\zeta_{11})^+\), 10.0.2801482624803139200000.1, 10.10.53339349076992.1, 10.0.11258530353021875.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |