Normalized defining polynomial
\( x^{20} - 6 x^{19} - 3 x^{18} + 76 x^{17} + 461 x^{16} - 2900 x^{15} + 5128 x^{14} - 710 x^{13} + 93754 x^{12} - 363006 x^{11} + 1650224 x^{10} - 3322504 x^{9} + 18839558 x^{8} - 37103844 x^{7} + 194491745 x^{6} - 295478572 x^{5} + 1484920771 x^{4} - 1670699804 x^{3} + 7060804611 x^{2} - 4546847540 x + 16067408281 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7848304897073886403551554174576640000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(1219,·)$, $\chi_{4620}(2561,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(4579,·)$, $\chi_{4620}(1301,·)$, $\chi_{4620}(3359,·)$, $\chi_{4620}(419,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(1259,·)$, $\chi_{4620}(3821,·)$, $\chi_{4620}(2479,·)$, $\chi_{4620}(881,·)$, $\chi_{4620}(839,·)$, $\chi_{4620}(2099,·)$, $\chi_{4620}(1721,·)$, $\chi_{4620}(379,·)$, $\chi_{4620}(2941,·)$, $\chi_{4620}(4159,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{41} a^{15} + \frac{16}{41} a^{14} + \frac{4}{41} a^{13} - \frac{19}{41} a^{12} + \frac{15}{41} a^{11} - \frac{7}{41} a^{10} - \frac{16}{41} a^{9} + \frac{5}{41} a^{8} - \frac{19}{41} a^{7} + \frac{9}{41} a^{6} - \frac{13}{41} a^{5} - \frac{8}{41} a^{4} - \frac{14}{41} a^{3} + \frac{2}{41} a^{2} - \frac{5}{41} a + \frac{3}{41}$, $\frac{1}{1763} a^{16} + \frac{15}{1763} a^{15} + \frac{111}{1763} a^{14} + \frac{428}{1763} a^{13} + \frac{157}{1763} a^{12} - \frac{22}{1763} a^{11} + \frac{32}{1763} a^{10} - \frac{266}{1763} a^{9} + \frac{181}{1763} a^{8} - \frac{792}{1763} a^{7} + \frac{757}{1763} a^{6} - \frac{36}{1763} a^{5} + \frac{35}{1763} a^{4} + \frac{8}{41} a^{3} + \frac{239}{1763} a^{2} - \frac{607}{1763} a - \frac{577}{1763}$, $\frac{1}{1763} a^{17} + \frac{15}{1763} a^{15} + \frac{827}{1763} a^{14} - \frac{458}{1763} a^{13} + \frac{461}{1763} a^{12} + \frac{534}{1763} a^{11} + \frac{114}{1763} a^{10} + \frac{8}{41} a^{9} + \frac{664}{1763} a^{8} - \frac{392}{1763} a^{7} + \frac{348}{1763} a^{6} + \frac{661}{1763} a^{5} + \frac{550}{1763} a^{4} + \frac{325}{1763} a^{3} - \frac{408}{1763} a^{2} + \frac{831}{1763} a + \frac{227}{1763}$, $\frac{1}{69593767956037792961409061} a^{18} + \frac{11611648168935997034754}{69593767956037792961409061} a^{17} - \frac{19706414154006772260470}{69593767956037792961409061} a^{16} + \frac{771160244826064274151232}{69593767956037792961409061} a^{15} - \frac{28767482767619602189984853}{69593767956037792961409061} a^{14} + \frac{24988653537527506295889424}{69593767956037792961409061} a^{13} - \frac{14753221729145837678022413}{69593767956037792961409061} a^{12} + \frac{4942929871466034936914360}{69593767956037792961409061} a^{11} - \frac{21811334905955791938508807}{69593767956037792961409061} a^{10} - \frac{30633738658115344918703663}{69593767956037792961409061} a^{9} + \frac{15444645094742103746162943}{69593767956037792961409061} a^{8} - \frac{10878963317318250565311956}{69593767956037792961409061} a^{7} - \frac{34256839330401320645224193}{69593767956037792961409061} a^{6} + \frac{34387672270997836422585574}{69593767956037792961409061} a^{5} + \frac{300184603994564524814658}{1618459719907855650265327} a^{4} - \frac{18341468339151607615891214}{69593767956037792961409061} a^{3} - \frac{27787962232887537389478835}{69593767956037792961409061} a^{2} + \frac{16130406082470869910897260}{69593767956037792961409061} a - \frac{24876388121011792802672920}{69593767956037792961409061}$, $\frac{1}{14606297475517207145799613056145815080891320327170719516389} a^{19} - \frac{104657150207441680841416810068051}{14606297475517207145799613056145815080891320327170719516389} a^{18} + \frac{2105091628115066511880314709457090052427128974079277294}{14606297475517207145799613056145815080891320327170719516389} a^{17} + \frac{833779046267827696465494669338195001105385186696455775}{14606297475517207145799613056145815080891320327170719516389} a^{16} - \frac{105385176837719134948230678087432017308573711657122960154}{14606297475517207145799613056145815080891320327170719516389} a^{15} + \frac{39432579695251541482000463199944068257985905963732205127}{635056411979009006339113611136774568734405231616118239843} a^{14} + \frac{348298560657326978447640204821777024200183028747487423388}{14606297475517207145799613056145815080891320327170719516389} a^{13} + \frac{3912299669301537452150408644092194999368089556203705683849}{14606297475517207145799613056145815080891320327170719516389} a^{12} + \frac{1468576775002750760827971574832598358535589095394109367689}{14606297475517207145799613056145815080891320327170719516389} a^{11} + \frac{490923630732776288484950269812616546970737254592888151683}{14606297475517207145799613056145815080891320327170719516389} a^{10} + \frac{6120565009761182191270092487531114561789037757521279341141}{14606297475517207145799613056145815080891320327170719516389} a^{9} - \frac{62539635645507871051844060715086097675430245204660488099}{218004439933092643967158403823071866878974930256279395767} a^{8} + \frac{247735121041884465114865531241009686123792868159081499929}{635056411979009006339113611136774568734405231616118239843} a^{7} + \frac{5289729974384361660777982270952002028265966155563092977287}{14606297475517207145799613056145815080891320327170719516389} a^{6} + \frac{42382078281978681025389866971039139306902701784295148081}{14606297475517207145799613056145815080891320327170719516389} a^{5} + \frac{1397216223707677459808868875290587306816293388853729319349}{14606297475517207145799613056145815080891320327170719516389} a^{4} - \frac{4055742635705493553668929281643659360697782957149619722822}{14606297475517207145799613056145815080891320327170719516389} a^{3} - \frac{1365356074769292840817453798271149038803622687024448031670}{14606297475517207145799613056145815080891320327170719516389} a^{2} + \frac{6238863213937390973796185227175543431441875941112937988081}{14606297475517207145799613056145815080891320327170719516389} a - \frac{839260830646446355352787698154308695183391732290030881520}{14606297475517207145799613056145815080891320327170719516389}$
Class group and class number
$C_{2}\times C_{1494820}$, which has order $2989640$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5868059.799558259 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{-5}, \sqrt{21})\), \(\Q(\zeta_{11})^+\), 10.0.685948419200000.1, 10.10.875463320250981.1, 10.0.2801482624803139200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |