Normalized defining polynomial
\( x^{20} - 6 x^{19} - 33 x^{18} + 238 x^{17} + 890 x^{16} - 6260 x^{15} - 8888 x^{14} + 80734 x^{13} + 112792 x^{12} - 866142 x^{11} + 64610 x^{10} + 3714770 x^{9} + 8810954 x^{8} - 33816384 x^{7} + 58532261 x^{6} - 43081774 x^{5} + 827188384 x^{4} - 1045516946 x^{3} + 3440960115 x^{2} - 2632174544 x + 15777305149 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7848304897073886403551554174576640000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(3331,·)$, $\chi_{4620}(4229,·)$, $\chi_{4620}(1651,·)$, $\chi_{4620}(449,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(3389,·)$, $\chi_{4620}(2071,·)$, $\chi_{4620}(3359,·)$, $\chi_{4620}(3809,·)$, $\chi_{4620}(419,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(839,·)$, $\chi_{4620}(1709,·)$, $\chi_{4620}(4591,·)$, $\chi_{4620}(2099,·)$, $\chi_{4620}(1259,·)$, $\chi_{4620}(2491,·)$, $\chi_{4620}(2941,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{43} a^{15} + \frac{17}{43} a^{14} - \frac{4}{43} a^{13} - \frac{2}{43} a^{12} + \frac{6}{43} a^{11} - \frac{2}{43} a^{10} - \frac{21}{43} a^{9} + \frac{1}{43} a^{7} - \frac{2}{43} a^{6} - \frac{20}{43} a^{5} - \frac{11}{43} a^{4} + \frac{18}{43} a^{3} + \frac{14}{43} a^{2} - \frac{11}{43} a + \frac{16}{43}$, $\frac{1}{43} a^{16} + \frac{8}{43} a^{14} - \frac{20}{43} a^{13} - \frac{3}{43} a^{12} - \frac{18}{43} a^{11} + \frac{13}{43} a^{10} + \frac{13}{43} a^{9} + \frac{1}{43} a^{8} - \frac{19}{43} a^{7} + \frac{14}{43} a^{6} - \frac{15}{43} a^{5} - \frac{10}{43} a^{4} + \frac{9}{43} a^{3} + \frac{9}{43} a^{2} - \frac{12}{43} a - \frac{14}{43}$, $\frac{1}{43} a^{17} + \frac{16}{43} a^{14} - \frac{14}{43} a^{13} - \frac{2}{43} a^{12} + \frac{8}{43} a^{11} - \frac{14}{43} a^{10} - \frac{3}{43} a^{9} - \frac{19}{43} a^{8} + \frac{6}{43} a^{7} + \frac{1}{43} a^{6} + \frac{21}{43} a^{5} + \frac{11}{43} a^{4} - \frac{6}{43} a^{3} + \frac{5}{43} a^{2} - \frac{12}{43} a + \frac{1}{43}$, $\frac{1}{2421962595992219291677062090671} a^{18} + \frac{24116042787542094517248632763}{2421962595992219291677062090671} a^{17} + \frac{1855430310564257175934538645}{2421962595992219291677062090671} a^{16} - \frac{6112300404246607698727301558}{2421962595992219291677062090671} a^{15} - \frac{457494560329134923321962443090}{2421962595992219291677062090671} a^{14} - \frac{1041107629255835187721304388183}{2421962595992219291677062090671} a^{13} + \frac{1160716634013666117875511346979}{2421962595992219291677062090671} a^{12} + \frac{1201918052977337975099653156900}{2421962595992219291677062090671} a^{11} + \frac{293457567704902463582912523670}{2421962595992219291677062090671} a^{10} + \frac{770633408571657874736429801825}{2421962595992219291677062090671} a^{9} + \frac{1108933476120848539192306186661}{2421962595992219291677062090671} a^{8} + \frac{612412384038177187219133774709}{2421962595992219291677062090671} a^{7} - \frac{802522503696837013830994516360}{2421962595992219291677062090671} a^{6} - \frac{787044348676203827803638508311}{2421962595992219291677062090671} a^{5} - \frac{138487679015171557805137211345}{2421962595992219291677062090671} a^{4} + \frac{622655595544425515348732328904}{2421962595992219291677062090671} a^{3} - \frac{724988759742510478549321155236}{2421962595992219291677062090671} a^{2} - \frac{1035480753653595863833430601131}{2421962595992219291677062090671} a - \frac{918682494503517258240259231920}{2421962595992219291677062090671}$, $\frac{1}{18344492492731593915266897949542694134927178049231622979719} a^{19} + \frac{3676610375844780761748181016}{18344492492731593915266897949542694134927178049231622979719} a^{18} - \frac{131687285391619325454826379452679684166743881830424486955}{18344492492731593915266897949542694134927178049231622979719} a^{17} + \frac{79464934297729158389356637653106193982081857260675504545}{18344492492731593915266897949542694134927178049231622979719} a^{16} - \frac{195219511224443032169861740071448334316984099636947899974}{18344492492731593915266897949542694134927178049231622979719} a^{15} + \frac{1140485200378870780551620217925575951624916375245029523827}{18344492492731593915266897949542694134927178049231622979719} a^{14} + \frac{171000959462504494963821087687884264246549977032077713927}{426616104482130091052718556966109165928539024400735418133} a^{13} - \frac{7397887362638574697172583045646596372062898513924094809406}{18344492492731593915266897949542694134927178049231622979719} a^{12} + \frac{1743277465769373197599161204652656481872802329044618028332}{18344492492731593915266897949542694134927178049231622979719} a^{11} - \frac{5916706044257025628629109109768098053886458586245400768369}{18344492492731593915266897949542694134927178049231622979719} a^{10} + \frac{273400784470149509444113623053767972266052714472782150267}{797586630118764952837691215197508440649007741270940129553} a^{9} + \frac{4613238402137179713700780827561249894655110264475502170762}{18344492492731593915266897949542694134927178049231622979719} a^{8} - \frac{6480562730745308290430000124257184265537300698468236436379}{18344492492731593915266897949542694134927178049231622979719} a^{7} - \frac{58109834384343745384616261677619837264919635314640671267}{797586630118764952837691215197508440649007741270940129553} a^{6} + \frac{3708706113924971031666807094722974824391168307803084780365}{18344492492731593915266897949542694134927178049231622979719} a^{5} + \frac{231458025705666801582535559015181789596062602881554546168}{18344492492731593915266897949542694134927178049231622979719} a^{4} + \frac{3111024926140988990291682301817590409965751970102436598097}{18344492492731593915266897949542694134927178049231622979719} a^{3} + \frac{1331443538609731445931563620176363249560905868567543822145}{18344492492731593915266897949542694134927178049231622979719} a^{2} + \frac{1283945583587171994962302668635242941510590904497922122486}{18344492492731593915266897949542694134927178049231622979719} a - \frac{6953576944764321032216312087982340692090956527750541199471}{18344492492731593915266897949542694134927178049231622979719}$
Class group and class number
$C_{2}\times C_{530420}$, which has order $1060840$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8013735.512306594 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{7}, \sqrt{-15})\), \(\Q(\zeta_{11})^+\), 10.0.2801482624803139200000.1, 10.0.162778775259375.1, 10.10.3689195226078208.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |