Normalized defining polynomial
\( x^{20} + 529 x^{18} + 138365 x^{16} + 22839038 x^{14} + 2068594443 x^{12} + 87853088411 x^{10} + 3672413853363 x^{8} + 361572835120248 x^{6} + 15138792734705123 x^{4} + 184040238341354934 x^{2} + 676348299686920069 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78130637554327275128616443231859804160000000000=2^{20}\cdot 5^{10}\cdot 11^{9}\cdot 199^{5}\cdot 401^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $221.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 199, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{2}{11} a^{12} + \frac{2}{11} a^{10} - \frac{4}{11} a^{8} + \frac{4}{11} a^{6} - \frac{1}{11} a^{4} + \frac{5}{11} a^{2}$, $\frac{1}{11} a^{15} - \frac{2}{11} a^{13} + \frac{2}{11} a^{11} - \frac{4}{11} a^{9} + \frac{4}{11} a^{7} - \frac{1}{11} a^{5} + \frac{5}{11} a^{3}$, $\frac{1}{877789} a^{16} + \frac{529}{877789} a^{14} + \frac{138365}{877789} a^{12} + \frac{16524}{877789} a^{10} - \frac{354230}{877789} a^{8} - \frac{38514}{79799} a^{6} + \frac{113962}{877789} a^{4} - \frac{416258}{877789} a^{2}$, $\frac{1}{877789} a^{17} + \frac{529}{877789} a^{15} + \frac{138365}{877789} a^{13} + \frac{16524}{877789} a^{11} - \frac{354230}{877789} a^{9} - \frac{38514}{79799} a^{7} + \frac{113962}{877789} a^{5} - \frac{416258}{877789} a^{3}$, $\frac{1}{1506180233621636210228899378660058724082461942797175301220971467749577879463306} a^{18} + \frac{43152874011222967564005842076517162930959824656199612058948967096843870}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{16} + \frac{66420163783991973397196909689879979922341798692167179639695083467362230212985}{1506180233621636210228899378660058724082461942797175301220971467749577879463306} a^{14} - \frac{76904897996917911202970595148344133902995413975505530017959265071917024310667}{1506180233621636210228899378660058724082461942797175301220971467749577879463306} a^{12} - \frac{147501155187651937227339360654570596554997307438197638368587036510873586716692}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{10} + \frac{31229186219414125270593917096320386000666334960344912602257197736701807277937}{136925475783785110020809034423641702189314722072470481929179224340870716314846} a^{8} + \frac{163418688471727283126866946397770785836971777363824120795175297936944244817988}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{6} - \frac{348606739012146794357637341439100374155480855795201137885262468125450520860799}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{4} - \frac{363093655771021809290609914464976736989473518043133109013700944501436209}{1715879594779196606734533445577534833635944336050207169628431739005134354} a^{2} - \frac{572545718885743803808729950317925297422910450042677972281911649737}{1954774546934623932100463147268346759455796707466381066097241750586}$, $\frac{1}{1506180233621636210228899378660058724082461942797175301220971467749577879463306} a^{19} + \frac{43152874011222967564005842076517162930959824656199612058948967096843870}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{17} + \frac{66420163783991973397196909689879979922341798692167179639695083467362230212985}{1506180233621636210228899378660058724082461942797175301220971467749577879463306} a^{15} - \frac{76904897996917911202970595148344133902995413975505530017959265071917024310667}{1506180233621636210228899378660058724082461942797175301220971467749577879463306} a^{13} - \frac{147501155187651937227339360654570596554997307438197638368587036510873586716692}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{11} + \frac{31229186219414125270593917096320386000666334960344912602257197736701807277937}{136925475783785110020809034423641702189314722072470481929179224340870716314846} a^{9} + \frac{163418688471727283126866946397770785836971777363824120795175297936944244817988}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{7} - \frac{348606739012146794357637341439100374155480855795201137885262468125450520860799}{753090116810818105114449689330029362041230971398587650610485733874788939731653} a^{5} - \frac{363093655771021809290609914464976736989473518043133109013700944501436209}{1715879594779196606734533445577534833635944336050207169628431739005134354} a^{3} - \frac{572545718885743803808729950317925297422910450042677972281911649737}{1954774546934623932100463147268346759455796707466381066097241750586} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36289305879900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1022 are not computed |
| Character table for t20n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.331913965625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $199$ | $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 199.4.2.1 | $x^{4} + 2189 x^{2} + 1425636$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 199.6.3.2 | $x^{6} - 39601 x^{2} + 31522396$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 199.8.0.1 | $x^{8} - x + 15$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||