Normalized defining polynomial
\( x^{20} - 10 x^{18} + 80 x^{16} - 20 x^{15} - 350 x^{14} + 150 x^{13} + 1025 x^{12} - 500 x^{11} - 1860 x^{10} + 750 x^{9} + 1925 x^{8} - 750 x^{7} - 1275 x^{6} + 850 x^{5} + 1625 x^{4} + 1000 x^{3} + 1000 x^{2} + 1000 x + 400 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78125000000000000000000000000=2^{24}\cdot 5^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{25} a^{12} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{13} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{14} - \frac{2}{5} a^{9} - \frac{1}{5} a^{4}$, $\frac{1}{25} a^{15} - \frac{1}{5} a^{5}$, $\frac{1}{25} a^{16} - \frac{1}{5} a^{6}$, $\frac{1}{150} a^{17} + \frac{1}{75} a^{15} + \frac{1}{75} a^{14} + \frac{1}{75} a^{13} + \frac{1}{75} a^{12} - \frac{1}{15} a^{11} + \frac{1}{15} a^{10} - \frac{1}{10} a^{9} - \frac{4}{15} a^{8} + \frac{1}{3} a^{7} + \frac{1}{10} a^{5} + \frac{4}{15} a^{4} + \frac{1}{10} a^{3} + \frac{4}{15} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{900} a^{18} - \frac{1}{450} a^{17} + \frac{1}{450} a^{16} + \frac{4}{225} a^{15} - \frac{2}{225} a^{14} + \frac{4}{225} a^{13} - \frac{7}{450} a^{12} - \frac{1}{10} a^{11} + \frac{17}{180} a^{10} - \frac{13}{90} a^{9} - \frac{2}{9} a^{8} - \frac{5}{18} a^{7} - \frac{29}{60} a^{6} - \frac{4}{45} a^{5} + \frac{53}{180} a^{4} + \frac{11}{45} a^{3} + \frac{49}{180} a^{2} - \frac{5}{18} a + \frac{4}{9}$, $\frac{1}{147449666863764545400} a^{19} + \frac{1423223430386944}{18431208357970568175} a^{18} - \frac{1323715679196545}{982997779091763636} a^{17} + \frac{55764432020642186}{6143736119323522725} a^{16} + \frac{3167105576327861}{259594483915078425} a^{15} - \frac{96001636241985247}{36862416715941136350} a^{14} + \frac{351418986231888829}{73724833431882272700} a^{13} - \frac{249805194813740249}{14744966686376454540} a^{12} - \frac{425368332143474879}{5897986674550581816} a^{11} - \frac{234707693333152049}{2457494447729409090} a^{10} - \frac{36358770906268714}{1228747223864704545} a^{9} - \frac{1960388529398019403}{4914988895458818180} a^{8} - \frac{2347863403843493083}{5897986674550581816} a^{7} - \frac{856271405809337987}{14744966686376454540} a^{6} - \frac{4163997741215606483}{29489933372752909080} a^{5} + \frac{3249697375117650389}{14744966686376454540} a^{4} + \frac{4848866620592424779}{9829977790917636360} a^{3} + \frac{712138323702383}{737248334318822727} a^{2} + \frac{74127834168425875}{163832963181960606} a - \frac{339153628479900718}{737248334318822727}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{458337830400175493}{147449666863764545400} a^{19} + \frac{19928739521897713}{18431208357970568175} a^{18} + \frac{153228506499709907}{4914988895458818180} a^{17} - \frac{70063120096258939}{6143736119323522725} a^{16} - \frac{2585534954653426}{10383779356603137} a^{15} + \frac{5673006145274857661}{36862416715941136350} a^{14} + \frac{15746645405116338527}{14744966686376454540} a^{13} - \frac{13072327530932902187}{14744966686376454540} a^{12} - \frac{88526434627567624561}{29489933372752909080} a^{11} + \frac{6916096223800292551}{2457494447729409090} a^{10} + \frac{2503053063428332169}{491498889545881818} a^{9} - \frac{22874453939617245049}{4914988895458818180} a^{8} - \frac{28312999276266403441}{5897986674550581816} a^{7} + \frac{68794176305767512343}{14744966686376454540} a^{6} + \frac{17177327425266448151}{5897986674550581816} a^{5} - \frac{59021910871291106677}{14744966686376454540} a^{4} - \frac{8963601184051215599}{1965995558183527272} a^{3} - \frac{750687113854158856}{737248334318822727} a^{2} - \frac{160945336488067336}{81916481590980303} a - \frac{1410664807717005592}{737248334318822727} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11302864.7053 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_5:F_5$ (as 20T49):
| A solvable group of order 200 |
| The 20 conjugacy class representatives for $C_2\times C_5:F_5$ |
| Character table for $C_2\times C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.2.125000000000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||