Normalized defining polynomial
\( x^{20} - 5 x^{17} + 25 x^{16} - 79 x^{15} + 120 x^{14} - 130 x^{13} + 160 x^{12} + 45 x^{11} - 39 x^{10} - 315 x^{9} + 810 x^{8} - 1330 x^{7} + 1810 x^{6} - 1714 x^{5} + 1445 x^{4} - 1055 x^{3} + 550 x^{2} - 255 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7729954898655414581298828125=5^{25}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{15} a^{10} + \frac{1}{5} a^{5} + \frac{1}{3} a^{2} + \frac{2}{5}$, $\frac{1}{15} a^{11} + \frac{1}{5} a^{6} + \frac{1}{3} a^{3} + \frac{2}{5} a$, $\frac{1}{15} a^{12} + \frac{1}{5} a^{7} + \frac{1}{3} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{45} a^{13} - \frac{1}{45} a^{10} - \frac{1}{9} a^{9} - \frac{2}{45} a^{8} - \frac{1}{9} a^{7} - \frac{4}{9} a^{6} - \frac{2}{5} a^{5} + \frac{2}{9} a^{4} - \frac{14}{45} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a + \frac{1}{5}$, $\frac{1}{45} a^{14} - \frac{1}{45} a^{11} + \frac{1}{45} a^{10} - \frac{2}{45} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{5} a^{6} - \frac{17}{45} a^{5} - \frac{14}{45} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{225} a^{15} + \frac{1}{45} a^{12} - \frac{1}{45} a^{11} + \frac{7}{225} a^{10} - \frac{1}{45} a^{9} - \frac{1}{45} a^{8} + \frac{4}{15} a^{7} - \frac{4}{45} a^{6} - \frac{62}{225} a^{5} - \frac{14}{45} a^{4} - \frac{1}{5} a^{3} + \frac{4}{15} a^{2} - \frac{1}{3} a + \frac{6}{25}$, $\frac{1}{2475} a^{16} + \frac{1}{495} a^{15} + \frac{1}{99} a^{14} - \frac{4}{495} a^{13} - \frac{8}{495} a^{12} + \frac{17}{2475} a^{11} - \frac{14}{495} a^{10} + \frac{1}{55} a^{9} - \frac{53}{495} a^{8} - \frac{2}{99} a^{7} - \frac{157}{2475} a^{6} + \frac{109}{495} a^{5} + \frac{101}{495} a^{4} - \frac{163}{495} a^{3} + \frac{203}{495} a^{2} + \frac{21}{275} a - \frac{9}{55}$, $\frac{1}{2475} a^{17} + \frac{4}{495} a^{14} + \frac{1}{495} a^{13} + \frac{52}{2475} a^{12} + \frac{2}{495} a^{11} - \frac{1}{55} a^{10} + \frac{56}{495} a^{9} - \frac{53}{495} a^{8} + \frac{698}{2475} a^{7} - \frac{5}{33} a^{6} + \frac{13}{55} a^{5} - \frac{17}{99} a^{4} + \frac{17}{495} a^{3} - \frac{1201}{2475} a^{2} - \frac{79}{165} a + \frac{23}{55}$, $\frac{1}{423225} a^{18} - \frac{17}{141075} a^{17} + \frac{23}{423225} a^{16} - \frac{173}{423225} a^{15} - \frac{28}{7695} a^{14} + \frac{1537}{423225} a^{13} - \frac{6092}{423225} a^{12} + \frac{12706}{423225} a^{11} - \frac{1222}{141075} a^{10} - \frac{524}{84645} a^{9} - \frac{524}{12825} a^{8} + \frac{127327}{423225} a^{7} + \frac{62108}{141075} a^{6} + \frac{157846}{423225} a^{5} + \frac{16817}{84645} a^{4} - \frac{99521}{423225} a^{3} - \frac{157709}{423225} a^{2} - \frac{54676}{141075} a + \frac{953}{5225}$, $\frac{1}{25816725} a^{19} - \frac{1}{8605575} a^{18} + \frac{2876}{25816725} a^{17} + \frac{17}{271755} a^{16} - \frac{2978}{2346975} a^{15} + \frac{50737}{25816725} a^{14} + \frac{20999}{2346975} a^{13} + \frac{62632}{25816725} a^{12} + \frac{12191}{573705} a^{11} + \frac{328769}{25816725} a^{10} - \frac{11434}{782325} a^{9} + \frac{504571}{25816725} a^{8} - \frac{252443}{2868525} a^{7} + \frac{1344797}{5163345} a^{6} - \frac{10679399}{25816725} a^{5} + \frac{7352284}{25816725} a^{4} + \frac{7579918}{25816725} a^{3} + \frac{458252}{956175} a^{2} + \frac{32374}{573705} a + \frac{46523}{318725}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2264798.97636 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $D_{20}$ |
| Character table for $D_{20}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.605.1, 5.1.1890625.1, 10.0.39319091796875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | $20$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.13.8 | $x^{10} + 20 x^{4} + 10$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ |
| 5.10.12.7 | $x^{10} + 10 x^{8} + 5 x^{7} + 15 x^{6} + 5 x^{4} + 5 x^{2} - 20 x + 7$ | $5$ | $2$ | $12$ | $D_{10}$ | $[3/2]_{2}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |