Properties

Label 20.0.772...125.1
Degree $20$
Signature $[0, 10]$
Discriminant $7.730\times 10^{27}$
Root discriminant \(24.80\)
Ramified primes $5,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{20}$ (as 20T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^17 + 25*x^16 - 79*x^15 + 120*x^14 - 130*x^13 + 160*x^12 + 45*x^11 - 39*x^10 - 315*x^9 + 810*x^8 - 1330*x^7 + 1810*x^6 - 1714*x^5 + 1445*x^4 - 1055*x^3 + 550*x^2 - 255*x + 81)
 
gp: K = bnfinit(y^20 - 5*y^17 + 25*y^16 - 79*y^15 + 120*y^14 - 130*y^13 + 160*y^12 + 45*y^11 - 39*y^10 - 315*y^9 + 810*y^8 - 1330*y^7 + 1810*y^6 - 1714*y^5 + 1445*y^4 - 1055*y^3 + 550*y^2 - 255*y + 81, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 5*x^17 + 25*x^16 - 79*x^15 + 120*x^14 - 130*x^13 + 160*x^12 + 45*x^11 - 39*x^10 - 315*x^9 + 810*x^8 - 1330*x^7 + 1810*x^6 - 1714*x^5 + 1445*x^4 - 1055*x^3 + 550*x^2 - 255*x + 81);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 5*x^17 + 25*x^16 - 79*x^15 + 120*x^14 - 130*x^13 + 160*x^12 + 45*x^11 - 39*x^10 - 315*x^9 + 810*x^8 - 1330*x^7 + 1810*x^6 - 1714*x^5 + 1445*x^4 - 1055*x^3 + 550*x^2 - 255*x + 81)
 

\( x^{20} - 5 x^{17} + 25 x^{16} - 79 x^{15} + 120 x^{14} - 130 x^{13} + 160 x^{12} + 45 x^{11} - 39 x^{10} + \cdots + 81 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7729954898655414581298828125\) \(\medspace = 5^{25}\cdot 11^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(24.80\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{13/10}11^{1/2}\approx 26.875549226221146$
Ramified primes:   \(5\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{15}a^{10}+\frac{1}{5}a^{5}+\frac{1}{3}a^{2}+\frac{2}{5}$, $\frac{1}{15}a^{11}+\frac{1}{5}a^{6}+\frac{1}{3}a^{3}+\frac{2}{5}a$, $\frac{1}{15}a^{12}+\frac{1}{5}a^{7}+\frac{1}{3}a^{4}+\frac{2}{5}a^{2}$, $\frac{1}{45}a^{13}-\frac{1}{45}a^{10}-\frac{1}{9}a^{9}-\frac{2}{45}a^{8}-\frac{1}{9}a^{7}-\frac{4}{9}a^{6}-\frac{2}{5}a^{5}+\frac{2}{9}a^{4}-\frac{14}{45}a^{3}+\frac{4}{9}a^{2}-\frac{1}{3}a+\frac{1}{5}$, $\frac{1}{45}a^{14}-\frac{1}{45}a^{11}+\frac{1}{45}a^{10}-\frac{2}{45}a^{9}-\frac{1}{9}a^{8}-\frac{4}{9}a^{7}-\frac{2}{5}a^{6}-\frac{17}{45}a^{5}-\frac{14}{45}a^{4}+\frac{4}{9}a^{3}+\frac{1}{3}a^{2}+\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{225}a^{15}+\frac{1}{45}a^{12}-\frac{1}{45}a^{11}+\frac{7}{225}a^{10}-\frac{1}{45}a^{9}-\frac{1}{45}a^{8}+\frac{4}{15}a^{7}-\frac{4}{45}a^{6}-\frac{62}{225}a^{5}-\frac{14}{45}a^{4}-\frac{1}{5}a^{3}+\frac{4}{15}a^{2}-\frac{1}{3}a+\frac{6}{25}$, $\frac{1}{2475}a^{16}+\frac{1}{495}a^{15}+\frac{1}{99}a^{14}-\frac{4}{495}a^{13}-\frac{8}{495}a^{12}+\frac{17}{2475}a^{11}-\frac{14}{495}a^{10}+\frac{1}{55}a^{9}-\frac{53}{495}a^{8}-\frac{2}{99}a^{7}-\frac{157}{2475}a^{6}+\frac{109}{495}a^{5}+\frac{101}{495}a^{4}-\frac{163}{495}a^{3}+\frac{203}{495}a^{2}+\frac{21}{275}a-\frac{9}{55}$, $\frac{1}{2475}a^{17}+\frac{4}{495}a^{14}+\frac{1}{495}a^{13}+\frac{52}{2475}a^{12}+\frac{2}{495}a^{11}-\frac{1}{55}a^{10}+\frac{56}{495}a^{9}-\frac{53}{495}a^{8}+\frac{698}{2475}a^{7}-\frac{5}{33}a^{6}+\frac{13}{55}a^{5}-\frac{17}{99}a^{4}+\frac{17}{495}a^{3}-\frac{1201}{2475}a^{2}-\frac{79}{165}a+\frac{23}{55}$, $\frac{1}{423225}a^{18}-\frac{17}{141075}a^{17}+\frac{23}{423225}a^{16}-\frac{173}{423225}a^{15}-\frac{28}{7695}a^{14}+\frac{1537}{423225}a^{13}-\frac{6092}{423225}a^{12}+\frac{12706}{423225}a^{11}-\frac{1222}{141075}a^{10}-\frac{524}{84645}a^{9}-\frac{524}{12825}a^{8}+\frac{127327}{423225}a^{7}+\frac{62108}{141075}a^{6}+\frac{157846}{423225}a^{5}+\frac{16817}{84645}a^{4}-\frac{99521}{423225}a^{3}-\frac{157709}{423225}a^{2}-\frac{54676}{141075}a+\frac{953}{5225}$, $\frac{1}{25816725}a^{19}-\frac{1}{8605575}a^{18}+\frac{2876}{25816725}a^{17}+\frac{17}{271755}a^{16}-\frac{2978}{2346975}a^{15}+\frac{50737}{25816725}a^{14}+\frac{20999}{2346975}a^{13}+\frac{62632}{25816725}a^{12}+\frac{12191}{573705}a^{11}+\frac{328769}{25816725}a^{10}-\frac{11434}{782325}a^{9}+\frac{504571}{25816725}a^{8}-\frac{252443}{2868525}a^{7}+\frac{1344797}{5163345}a^{6}-\frac{10679399}{25816725}a^{5}+\frac{7352284}{25816725}a^{4}+\frac{7579918}{25816725}a^{3}+\frac{458252}{956175}a^{2}+\frac{32374}{573705}a+\frac{46523}{318725}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{85726}{25816725}a^{19}-\frac{5228}{956175}a^{18}-\frac{533866}{25816725}a^{17}-\frac{797759}{25816725}a^{16}+\frac{2824889}{25816725}a^{15}-\frac{7695953}{25816725}a^{14}+\frac{9678553}{25816725}a^{13}+\frac{4838998}{25816725}a^{12}-\frac{92401}{782325}a^{11}+\frac{8040518}{25816725}a^{10}-\frac{5638723}{2868525}a^{9}-\frac{92737643}{25816725}a^{8}+\frac{34784224}{8605575}a^{7}-\frac{44017142}{25816725}a^{6}+\frac{4541242}{25816725}a^{5}-\frac{15279941}{25816725}a^{4}-\frac{104409554}{25816725}a^{3}+\frac{12763882}{8605575}a^{2}-\frac{7490999}{2868525}a+\frac{515396}{318725}$, $\frac{33422}{25816725}a^{19}+\frac{94822}{5163345}a^{18}+\frac{184837}{25816725}a^{17}-\frac{13867}{956175}a^{16}-\frac{190238}{2868525}a^{15}+\frac{2790353}{8605575}a^{14}-\frac{1105079}{1032669}a^{13}+\frac{33634819}{25816725}a^{12}-\frac{22705003}{25816725}a^{11}+\frac{43736821}{25816725}a^{10}+\frac{52967071}{25816725}a^{9}-\frac{6654599}{5163345}a^{8}-\frac{161180719}{25816725}a^{7}+\frac{282537203}{25816725}a^{6}-\frac{330257801}{25816725}a^{5}+\frac{450361873}{25816725}a^{4}-\frac{68391403}{5163345}a^{3}+\frac{17485483}{2346975}a^{2}-\frac{47342522}{8605575}a+\frac{532162}{318725}$, $\frac{888736}{25816725}a^{19}+\frac{79886}{2346975}a^{18}-\frac{72652}{25816725}a^{17}-\frac{146099}{782325}a^{16}+\frac{1198331}{1721115}a^{15}-\frac{160204}{86925}a^{14}+\frac{37153577}{25816725}a^{13}-\frac{14879464}{25816725}a^{12}+\frac{2696944}{1358775}a^{11}+\frac{28200577}{5163345}a^{10}+\frac{34564163}{25816725}a^{9}-\frac{18896963}{1358775}a^{8}+\frac{420497974}{25816725}a^{7}-\frac{392306306}{25816725}a^{6}+\frac{102156589}{5163345}a^{5}-\frac{238413886}{25816725}a^{4}+\frac{154850249}{25816725}a^{3}-\frac{113551133}{25816725}a^{2}-\frac{6077971}{8605575}a-\frac{2289}{5795}$, $\frac{4298}{573705}a^{19}+\frac{20962}{2346975}a^{18}+\frac{566}{344223}a^{17}-\frac{950318}{25816725}a^{16}+\frac{3835823}{25816725}a^{15}-\frac{20051}{54351}a^{14}+\frac{6051029}{25816725}a^{13}-\frac{2422}{54351}a^{12}+\frac{698164}{2346975}a^{11}+\frac{610393}{452925}a^{10}+\frac{216817}{469395}a^{9}-\frac{22327073}{8605575}a^{8}+\frac{18204748}{5163345}a^{7}-\frac{19732148}{8605575}a^{6}+\frac{90253124}{25816725}a^{5}-\frac{8221}{24705}a^{4}+\frac{890578}{2346975}a^{3}+\frac{4729807}{5163345}a^{2}-\frac{7362164}{8605575}a+\frac{363492}{318725}$, $\frac{2897}{271755}a^{19}+\frac{55283}{8605575}a^{18}+\frac{17354}{25816725}a^{17}-\frac{1294364}{25816725}a^{16}+\frac{6298694}{25816725}a^{15}-\frac{3513244}{5163345}a^{14}+\frac{19892833}{25816725}a^{13}-\frac{16386602}{25816725}a^{12}+\frac{885121}{956175}a^{11}+\frac{30099038}{25816725}a^{10}+\frac{495122}{1721115}a^{9}-\frac{92676638}{25816725}a^{8}+\frac{21370738}{2868525}a^{7}-\frac{19062802}{2346975}a^{6}+\frac{261277942}{25816725}a^{5}-\frac{8292338}{1032669}a^{4}+\frac{215389831}{25816725}a^{3}-\frac{15520091}{2868525}a^{2}+\frac{8366741}{2868525}a-\frac{419279}{318725}$, $\frac{202319}{25816725}a^{19}+\frac{45146}{2868525}a^{18}+\frac{235237}{25816725}a^{17}-\frac{1025749}{25816725}a^{16}+\frac{3042454}{25816725}a^{15}-\frac{620717}{2346975}a^{14}-\frac{1800457}{25816725}a^{13}+\frac{3339959}{25816725}a^{12}+\frac{2779394}{8605575}a^{11}+\frac{44735338}{25816725}a^{10}+\frac{1496741}{956175}a^{9}-\frac{5433158}{2346975}a^{8}+\frac{6411047}{8605575}a^{7}+\frac{5841743}{25816725}a^{6}+\frac{31991027}{25816725}a^{5}+\frac{65980136}{25816725}a^{4}-\frac{34438594}{25816725}a^{3}+\frac{954884}{452925}a^{2}-\frac{4056739}{2868525}a+\frac{232526}{318725}$, $\frac{55741}{8605575}a^{19}+\frac{45256}{2346975}a^{18}+\frac{25316}{1721115}a^{17}-\frac{589781}{25816725}a^{16}+\frac{1923857}{25816725}a^{15}-\frac{141791}{1358775}a^{14}-\frac{11488648}{25816725}a^{13}+\frac{129766}{271755}a^{12}-\frac{584702}{2346975}a^{11}+\frac{294089}{150975}a^{10}+\frac{65708569}{25816725}a^{9}-\frac{8165614}{8605575}a^{8}-\frac{85292}{5163345}a^{7}+\frac{25111784}{8605575}a^{6}-\frac{169319989}{25816725}a^{5}+\frac{7947473}{1358775}a^{4}-\frac{130067926}{25816725}a^{3}+\frac{4369283}{1032669}a^{2}-\frac{18918233}{8605575}a+\frac{111373}{318725}$, $\frac{1610569}{25816725}a^{19}+\frac{1930997}{25816725}a^{18}-\frac{11203}{469395}a^{17}-\frac{850571}{2346975}a^{16}+\frac{6242267}{5163345}a^{15}-\frac{6781667}{2346975}a^{14}+\frac{10540213}{8605575}a^{13}+\frac{2298616}{1721115}a^{12}+\frac{4044028}{2346975}a^{11}+\frac{58299601}{5163345}a^{10}+\frac{65482432}{25816725}a^{9}-\frac{751848374}{25816725}a^{8}+\frac{127964173}{5163345}a^{7}-\frac{177079808}{25816725}a^{6}+\frac{2032684}{156465}a^{5}+\frac{4929692}{782325}a^{4}-\frac{10646789}{782325}a^{3}+\frac{41119747}{5163345}a^{2}-\frac{78039098}{8605575}a+\frac{50385}{12749}$, $\frac{58}{18117}a^{19}-\frac{366229}{25816725}a^{18}-\frac{207659}{8605575}a^{17}-\frac{400061}{25816725}a^{16}+\frac{4211567}{25816725}a^{15}-\frac{2541367}{5163345}a^{14}+\frac{22920962}{25816725}a^{13}-\frac{6615619}{25816725}a^{12}-\frac{6181972}{25816725}a^{11}+\frac{92386}{2868525}a^{10}-\frac{16139221}{5163345}a^{9}-\frac{23733784}{8605575}a^{8}+\frac{238924949}{25816725}a^{7}-\frac{62279461}{8605575}a^{6}+\frac{80024471}{25816725}a^{5}-\frac{15746372}{5163345}a^{4}-\frac{63042631}{25816725}a^{3}+\frac{45381422}{25816725}a^{2}-\frac{15244028}{8605575}a+\frac{530373}{318725}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2264798.97636 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 2264798.97636 \cdot 1}{2\cdot\sqrt{7729954898655414581298828125}}\cr\approx \mathstrut & 1.23512203000 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^17 + 25*x^16 - 79*x^15 + 120*x^14 - 130*x^13 + 160*x^12 + 45*x^11 - 39*x^10 - 315*x^9 + 810*x^8 - 1330*x^7 + 1810*x^6 - 1714*x^5 + 1445*x^4 - 1055*x^3 + 550*x^2 - 255*x + 81)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 5*x^17 + 25*x^16 - 79*x^15 + 120*x^14 - 130*x^13 + 160*x^12 + 45*x^11 - 39*x^10 - 315*x^9 + 810*x^8 - 1330*x^7 + 1810*x^6 - 1714*x^5 + 1445*x^4 - 1055*x^3 + 550*x^2 - 255*x + 81, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 5*x^17 + 25*x^16 - 79*x^15 + 120*x^14 - 130*x^13 + 160*x^12 + 45*x^11 - 39*x^10 - 315*x^9 + 810*x^8 - 1330*x^7 + 1810*x^6 - 1714*x^5 + 1445*x^4 - 1055*x^3 + 550*x^2 - 255*x + 81);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 5*x^17 + 25*x^16 - 79*x^15 + 120*x^14 - 130*x^13 + 160*x^12 + 45*x^11 - 39*x^10 - 315*x^9 + 810*x^8 - 1330*x^7 + 1810*x^6 - 1714*x^5 + 1445*x^4 - 1055*x^3 + 550*x^2 - 255*x + 81);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{20}$ (as 20T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 40
The 13 conjugacy class representatives for $D_{20}$
Character table for $D_{20}$

Intermediate fields

\(\Q(\sqrt{-11}) \), 4.0.605.1, 5.1.1890625.1, 10.0.39319091796875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 40
Degree 20 sibling: 20.2.3513615863025188446044921875.1
Minimal sibling: 20.2.3513615863025188446044921875.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20$ ${\href{/padicField/3.2.0.1}{2} }^{9}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ R $20$ R ${\href{/padicField/13.4.0.1}{4} }^{5}$ $20$ ${\href{/padicField/19.2.0.1}{2} }^{10}$ ${\href{/padicField/23.2.0.1}{2} }^{9}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{10}$ ${\href{/padicField/31.10.0.1}{10} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{9}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{10}$ $20$ ${\href{/padicField/47.2.0.1}{2} }^{9}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{9}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.10.13.8$x^{10} + 20 x^{4} + 10$$10$$1$$13$$D_{10}$$[3/2]_{2}^{2}$
5.10.12.7$x^{10} - 50 x^{8} + 30 x^{7} + 175 x^{6} - 740 x^{5} + 225 x^{4} - 250 x^{3} + 150 x^{2} + 25$$5$$2$$12$$D_{10}$$[3/2]_{2}^{2}$
\(11\) Copy content Toggle raw display 11.4.2.1$x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$