Normalized defining polynomial
\( x^{20} + 620 x^{18} + 141050 x^{16} + 15692200 x^{14} + 956784000 x^{12} + 33380552000 x^{10} + 661086315000 x^{8} + 6929405820000 x^{6} + 31350462750000 x^{4} + 26481508200000 x^{2} + 5674608900000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(768617583627855357889739724818288214016000000000000000=2^{55}\cdot 5^{15}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $494.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2480=2^{4}\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2480}(123,·)$, $\chi_{2480}(1,·)$, $\chi_{2480}(387,·)$, $\chi_{2480}(147,·)$, $\chi_{2480}(2081,·)$, $\chi_{2480}(969,·)$, $\chi_{2480}(523,·)$, $\chi_{2480}(721,·)$, $\chi_{2480}(2123,·)$, $\chi_{2480}(867,·)$, $\chi_{2480}(2329,·)$, $\chi_{2480}(729,·)$, $\chi_{2480}(1883,·)$, $\chi_{2480}(481,·)$, $\chi_{2480}(1827,·)$, $\chi_{2480}(1769,·)$, $\chi_{2480}(1521,·)$, $\chi_{2480}(1267,·)$, $\chi_{2480}(249,·)$, $\chi_{2480}(1083,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10} a^{4}$, $\frac{1}{10} a^{5}$, $\frac{1}{50} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{50} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{500} a^{8} - \frac{1}{25} a^{4} + \frac{1}{5}$, $\frac{1}{500} a^{9} - \frac{1}{25} a^{5} + \frac{1}{5} a$, $\frac{1}{77500} a^{10} - \frac{1}{125} a^{6} - \frac{9}{25} a^{2}$, $\frac{1}{232500} a^{11} + \frac{1}{1500} a^{9} - \frac{7}{750} a^{7} - \frac{7}{150} a^{5} + \frac{7}{25} a^{3} + \frac{1}{15} a$, $\frac{1}{6975000} a^{12} - \frac{1}{697500} a^{10} - \frac{13}{22500} a^{8} + \frac{11}{1125} a^{6} + \frac{8}{375} a^{4} + \frac{14}{225} a^{2} - \frac{9}{25}$, $\frac{1}{20925000} a^{13} - \frac{1}{2092500} a^{11} + \frac{8}{16875} a^{9} + \frac{11}{3375} a^{7} + \frac{61}{2250} a^{5} - \frac{211}{675} a^{3} - \frac{4}{75} a$, $\frac{1}{62775000} a^{14} - \frac{1}{62775000} a^{12} - \frac{4}{1569375} a^{10} - \frac{8}{50625} a^{8} - \frac{31}{3375} a^{6} - \frac{29}{10125} a^{4} - \frac{56}{225} a^{2} + \frac{6}{25}$, $\frac{1}{188325000} a^{15} - \frac{1}{188325000} a^{13} - \frac{4}{4708125} a^{11} - \frac{437}{607500} a^{9} - \frac{197}{20250} a^{7} + \frac{376}{30375} a^{5} + \frac{214}{675} a^{3} - \frac{8}{25} a$, $\frac{1}{1723173750000} a^{16} + \frac{23}{6892695000} a^{14} + \frac{6221}{172317375000} a^{12} + \frac{3619}{689269500} a^{10} - \frac{14993}{185287500} a^{8} + \frac{3521}{2223450} a^{6} - \frac{57611}{6176250} a^{4} - \frac{838}{2745} a^{2} - \frac{3671}{7625}$, $\frac{1}{5169521250000} a^{17} + \frac{23}{20678085000} a^{15} + \frac{6221}{516952125000} a^{13} + \frac{3619}{2067808500} a^{11} + \frac{177791}{277931250} a^{9} + \frac{4799}{667035} a^{7} - \frac{461143}{9264375} a^{5} - \frac{1387}{8235} a^{3} - \frac{3257}{7625} a$, $\frac{1}{527034661588641270026250000} a^{18} + \frac{66151300313807}{527034661588641270026250000} a^{16} - \frac{309106987601297029}{52703466158864127002625000} a^{14} + \frac{465808058453027893}{13175866539716031750656250} a^{12} - \frac{3450978793145181829}{878391102647735450043750} a^{10} + \frac{137361631773410503097}{170011181157626216137500} a^{8} - \frac{9899340361079947411}{1889013123973624623750} a^{6} - \frac{711544824397683214}{104945173554090256875} a^{4} + \frac{533935564620279379}{2332114967868672375} a^{2} - \frac{16398713372268608}{259123885318741375}$, $\frac{1}{1581103984765923810078750000} a^{19} + \frac{66151300313807}{1581103984765923810078750000} a^{17} - \frac{309106987601297029}{158110398476592381007875000} a^{15} + \frac{465808058453027893}{39527599619148095251968750} a^{13} - \frac{3450978793145181829}{2635173307943206350131250} a^{11} + \frac{119345998522165733843}{127508385868219662103125} a^{9} - \frac{23839801420276219943}{2833519685960436935625} a^{7} - \frac{30807738243940638353}{629671041324541541250} a^{5} - \frac{1331756409674658521}{6996344903606017125} a^{3} + \frac{11808687897159889}{259123885318741375} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{10}\times C_{2000500}$, which has order $3200800000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2725468819.573966 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.246016000.10, 5.5.923521.1, 10.10.87336042233958400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | $20$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.1 | $x^{10} - 31$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |