Properties

Label 20.0.76648181564...8369.1
Degree $20$
Signature $[0, 10]$
Discriminant $11^{18}\cdot 13^{10}$
Root discriminant $31.21$
Ramified primes $11, 13$
Class number $25$ (GRH)
Class group $[25]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![59049, 19683, 26244, 15309, 13851, 9720, 7857, 5859, 4572, 3477, 2683, -1159, 508, -217, 97, -40, 19, -7, 4, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 4*x^18 - 7*x^17 + 19*x^16 - 40*x^15 + 97*x^14 - 217*x^13 + 508*x^12 - 1159*x^11 + 2683*x^10 + 3477*x^9 + 4572*x^8 + 5859*x^7 + 7857*x^6 + 9720*x^5 + 13851*x^4 + 15309*x^3 + 26244*x^2 + 19683*x + 59049)
 
gp: K = bnfinit(x^20 - x^19 + 4*x^18 - 7*x^17 + 19*x^16 - 40*x^15 + 97*x^14 - 217*x^13 + 508*x^12 - 1159*x^11 + 2683*x^10 + 3477*x^9 + 4572*x^8 + 5859*x^7 + 7857*x^6 + 9720*x^5 + 13851*x^4 + 15309*x^3 + 26244*x^2 + 19683*x + 59049, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 4 x^{18} - 7 x^{17} + 19 x^{16} - 40 x^{15} + 97 x^{14} - 217 x^{13} + 508 x^{12} - 1159 x^{11} + 2683 x^{10} + 3477 x^{9} + 4572 x^{8} + 5859 x^{7} + 7857 x^{6} + 9720 x^{5} + 13851 x^{4} + 15309 x^{3} + 26244 x^{2} + 19683 x + 59049 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(766481815643182771348259698369=11^{18}\cdot 13^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.21$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(143=11\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{143}(64,·)$, $\chi_{143}(1,·)$, $\chi_{143}(131,·)$, $\chi_{143}(129,·)$, $\chi_{143}(12,·)$, $\chi_{143}(142,·)$, $\chi_{143}(79,·)$, $\chi_{143}(14,·)$, $\chi_{143}(25,·)$, $\chi_{143}(90,·)$, $\chi_{143}(27,·)$, $\chi_{143}(92,·)$, $\chi_{143}(38,·)$, $\chi_{143}(103,·)$, $\chi_{143}(40,·)$, $\chi_{143}(105,·)$, $\chi_{143}(51,·)$, $\chi_{143}(116,·)$, $\chi_{143}(53,·)$, $\chi_{143}(118,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{8049} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1159}{2683}$, $\frac{1}{24147} a^{12} - \frac{1}{24147} a^{11} + \frac{4}{9} a^{10} + \frac{2}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1159}{8049} a + \frac{508}{2683}$, $\frac{1}{72441} a^{13} - \frac{1}{72441} a^{12} + \frac{4}{72441} a^{11} + \frac{2}{27} a^{10} + \frac{10}{27} a^{9} - \frac{4}{27} a^{8} + \frac{7}{27} a^{7} + \frac{8}{27} a^{6} + \frac{13}{27} a^{5} + \frac{11}{27} a^{4} + \frac{1}{27} a^{3} + \frac{1159}{24147} a^{2} + \frac{508}{8049} a + \frac{217}{2683}$, $\frac{1}{217323} a^{14} - \frac{1}{217323} a^{13} + \frac{4}{217323} a^{12} - \frac{7}{217323} a^{11} + \frac{10}{81} a^{10} - \frac{4}{81} a^{9} + \frac{34}{81} a^{8} + \frac{35}{81} a^{7} - \frac{14}{81} a^{6} + \frac{38}{81} a^{5} + \frac{1}{81} a^{4} + \frac{1159}{72441} a^{3} + \frac{508}{24147} a^{2} + \frac{217}{8049} a + \frac{97}{2683}$, $\frac{1}{651969} a^{15} - \frac{1}{651969} a^{14} + \frac{4}{651969} a^{13} - \frac{7}{651969} a^{12} + \frac{19}{651969} a^{11} - \frac{4}{243} a^{10} + \frac{34}{243} a^{9} - \frac{46}{243} a^{8} - \frac{95}{243} a^{7} - \frac{43}{243} a^{6} + \frac{1}{243} a^{5} + \frac{1159}{217323} a^{4} + \frac{508}{72441} a^{3} + \frac{217}{24147} a^{2} + \frac{97}{8049} a + \frac{40}{2683}$, $\frac{1}{1955907} a^{16} - \frac{1}{1955907} a^{15} + \frac{4}{1955907} a^{14} - \frac{7}{1955907} a^{13} + \frac{19}{1955907} a^{12} - \frac{40}{1955907} a^{11} + \frac{34}{729} a^{10} - \frac{46}{729} a^{9} + \frac{148}{729} a^{8} - \frac{286}{729} a^{7} + \frac{1}{729} a^{6} + \frac{1159}{651969} a^{5} + \frac{508}{217323} a^{4} + \frac{217}{72441} a^{3} + \frac{97}{24147} a^{2} + \frac{40}{8049} a + \frac{19}{2683}$, $\frac{1}{5867721} a^{17} - \frac{1}{5867721} a^{16} + \frac{4}{5867721} a^{15} - \frac{7}{5867721} a^{14} + \frac{19}{5867721} a^{13} - \frac{40}{5867721} a^{12} + \frac{97}{5867721} a^{11} + \frac{683}{2187} a^{10} - \frac{581}{2187} a^{9} + \frac{443}{2187} a^{8} + \frac{1}{2187} a^{7} + \frac{1159}{1955907} a^{6} + \frac{508}{651969} a^{5} + \frac{217}{217323} a^{4} + \frac{97}{72441} a^{3} + \frac{40}{24147} a^{2} + \frac{19}{8049} a + \frac{7}{2683}$, $\frac{1}{17603163} a^{18} - \frac{1}{17603163} a^{17} + \frac{4}{17603163} a^{16} - \frac{7}{17603163} a^{15} + \frac{19}{17603163} a^{14} - \frac{40}{17603163} a^{13} + \frac{97}{17603163} a^{12} - \frac{217}{17603163} a^{11} - \frac{2768}{6561} a^{10} - \frac{1744}{6561} a^{9} + \frac{1}{6561} a^{8} + \frac{1159}{5867721} a^{7} + \frac{508}{1955907} a^{6} + \frac{217}{651969} a^{5} + \frac{97}{217323} a^{4} + \frac{40}{72441} a^{3} + \frac{19}{24147} a^{2} + \frac{7}{8049} a + \frac{4}{2683}$, $\frac{1}{52809489} a^{19} - \frac{1}{52809489} a^{18} + \frac{4}{52809489} a^{17} - \frac{7}{52809489} a^{16} + \frac{19}{52809489} a^{15} - \frac{40}{52809489} a^{14} + \frac{97}{52809489} a^{13} - \frac{217}{52809489} a^{12} + \frac{508}{52809489} a^{11} - \frac{8305}{19683} a^{10} + \frac{1}{19683} a^{9} + \frac{1159}{17603163} a^{8} + \frac{508}{5867721} a^{7} + \frac{217}{1955907} a^{6} + \frac{97}{651969} a^{5} + \frac{40}{217323} a^{4} + \frac{19}{72441} a^{3} + \frac{7}{24147} a^{2} + \frac{4}{8049} a + \frac{1}{2683}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{25}$, which has order $25$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{7}{217323} a^{15} - \frac{75316}{217323} a^{4} \) (order $22$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2015201.7242 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-143}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{13})\), \(\Q(\zeta_{11})^+\), 10.0.875489472034463.1, 10.10.79589952003133.1, \(\Q(\zeta_{11})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R R ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
13Data not computed