Normalized defining polynomial
\( x^{20} - x^{19} - 13 x^{18} + 104 x^{16} + 43 x^{15} - 734 x^{14} - 9 x^{13} + 3770 x^{12} + 355 x^{11} - 11777 x^{10} - 7082 x^{9} + 29156 x^{8} + 6480 x^{7} - 42976 x^{6} + 18272 x^{5} + 39296 x^{4} - 9856 x^{3} - 4608 x^{2} - 1536 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(766436025104871719096831462361=3^{10}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(71,·)$, $\chi_{231}(202,·)$, $\chi_{231}(146,·)$, $\chi_{231}(20,·)$, $\chi_{231}(218,·)$, $\chi_{231}(155,·)$, $\chi_{231}(92,·)$, $\chi_{231}(223,·)$, $\chi_{231}(97,·)$, $\chi_{231}(34,·)$, $\chi_{231}(104,·)$, $\chi_{231}(169,·)$, $\chi_{231}(113,·)$, $\chi_{231}(181,·)$, $\chi_{231}(148,·)$, $\chi_{231}(188,·)$, $\chi_{231}(125,·)$, $\chi_{231}(190,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{3}{8} a^{8} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{3}{16} a^{9} + \frac{1}{8} a^{8} - \frac{5}{16} a^{7} - \frac{3}{8} a^{6} + \frac{7}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} + \frac{3}{32} a^{10} + \frac{1}{16} a^{9} - \frac{5}{32} a^{8} + \frac{5}{16} a^{7} + \frac{7}{32} a^{6} + \frac{15}{32} a^{5} + \frac{5}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} + \frac{3}{64} a^{11} + \frac{1}{32} a^{10} - \frac{5}{64} a^{9} - \frac{11}{32} a^{8} + \frac{7}{64} a^{7} - \frac{17}{64} a^{6} + \frac{5}{32} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{13952} a^{17} - \frac{107}{13952} a^{16} + \frac{89}{13952} a^{15} - \frac{217}{6976} a^{14} - \frac{27}{3488} a^{13} + \frac{1203}{13952} a^{12} - \frac{603}{3488} a^{11} + \frac{3255}{13952} a^{10} - \frac{1415}{3488} a^{9} - \frac{1421}{13952} a^{8} + \frac{1393}{13952} a^{7} - \frac{455}{3488} a^{6} - \frac{735}{3488} a^{5} - \frac{215}{1744} a^{4} - \frac{21}{218} a^{3} - \frac{39}{109} a^{2} - \frac{77}{218} a - \frac{10}{109}$, $\frac{1}{5639071393024} a^{18} + \frac{171881021}{5639071393024} a^{17} + \frac{11000040525}{5639071393024} a^{16} + \frac{37737849765}{2819535696512} a^{15} - \frac{19138663505}{704883924128} a^{14} + \frac{13447414613}{245177017088} a^{13} + \frac{149920643919}{1409767848256} a^{12} + \frac{1181170729467}{5639071393024} a^{11} - \frac{552859782523}{1409767848256} a^{10} - \frac{42735556223}{245177017088} a^{9} - \frac{2334822740159}{5639071393024} a^{8} + \frac{70833943923}{176220981032} a^{7} - \frac{152775288149}{704883924128} a^{6} + \frac{9274740009}{22027622629} a^{5} - \frac{7497265145}{88110490516} a^{4} + \frac{4614670009}{176220981032} a^{3} - \frac{9512766487}{22027622629} a^{2} + \frac{242945916}{22027622629} a - \frac{111343436}{22027622629}$, $\frac{1}{159621012634948438888415744} a^{19} + \frac{5190359519875}{159621012634948438888415744} a^{18} - \frac{822767574996976152817}{159621012634948438888415744} a^{17} + \frac{82986320550690545284435}{39905253158737109722103936} a^{16} - \frac{307181320434110256292057}{19952626579368554861051968} a^{15} - \frac{2908170585300521978800965}{159621012634948438888415744} a^{14} + \frac{113773596235570870163149}{1856058286452888824283904} a^{13} - \frac{19074367071501874110913729}{159621012634948438888415744} a^{12} + \frac{19851382968686657793032411}{79810506317474219444207872} a^{11} + \frac{13767830798073119492728987}{159621012634948438888415744} a^{10} + \frac{75014515109347288814339243}{159621012634948438888415744} a^{9} - \frac{7374247331994989075794735}{79810506317474219444207872} a^{8} - \frac{3640208466643549802448769}{39905253158737109722103936} a^{7} + \frac{15460784910514591308709}{232007285806611103035488} a^{6} + \frac{855462558647649911707511}{9976313289684277430525984} a^{5} + \frac{1977235091004486838249813}{4988156644842138715262992} a^{4} + \frac{40589967828301921108183}{311759790302633669703937} a^{3} + \frac{395472907337739637960637}{1247039161210534678815748} a^{2} - \frac{45532400216670903949842}{311759790302633669703937} a - \frac{145867160066094093366010}{311759790302633669703937}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5535229389885625535}{10531174548719960340992} a^{19} + \frac{2013572255781494657}{10531174548719960340992} a^{18} + \frac{74736202242098525493}{10531174548719960340992} a^{17} + \frac{22837991672698904805}{5265587274359980170496} a^{16} - \frac{141303934624722806829}{2632793637179990085248} a^{15} - \frac{594074380580586622541}{10531174548719960340992} a^{14} + \frac{11150429988410841785}{30613879502092907968} a^{13} + \frac{2524732247358610335655}{10531174548719960340992} a^{12} - \frac{2541423820665460344355}{1316396818589995042624} a^{11} - \frac{14691831125782921942333}{10531174548719960340992} a^{10} + \frac{61151550721798694391685}{10531174548719960340992} a^{9} + \frac{4859548331739653152251}{658198409294997521312} a^{8} - \frac{32062117902631407624095}{2632793637179990085248} a^{7} - \frac{366011264946183654677}{30613879502092907968} a^{6} + \frac{1559571278045433832019}{82274801161874690164} a^{5} + \frac{109122794520016912161}{41137400580937345082} a^{4} - \frac{3935364285206466681573}{164549602323749380328} a^{3} - \frac{626146622318748687023}{82274801161874690164} a^{2} + \frac{39223546541648365258}{20568700290468672541} a + \frac{43859219384923174195}{20568700290468672541} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2934029.89978 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\zeta_{11})^+\), 10.10.875463320250981.1, 10.0.52089208083.1, 10.0.3602729712967.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |