Normalized defining polynomial
\( x^{20} - 4 x^{18} - 4 x^{17} + 20 x^{16} - 28 x^{15} - 42 x^{14} + 160 x^{13} + 242 x^{12} - 148 x^{11} + 140 x^{10} + 352 x^{9} - 1375 x^{8} + 168 x^{7} + 3214 x^{6} - 2152 x^{5} - 5308 x^{4} + 3888 x^{3} + 4816 x^{2} - 5440 x + 1600 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(765946119106374437095604224=2^{30}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{10} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{10} a^{9} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3} - \frac{3}{10} a^{2} + \frac{2}{5} a$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} + \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{7} - \frac{3}{10} a^{6} - \frac{3}{10} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{260} a^{16} - \frac{1}{130} a^{15} + \frac{3}{65} a^{14} + \frac{2}{13} a^{13} + \frac{31}{130} a^{12} + \frac{4}{65} a^{11} - \frac{5}{26} a^{10} + \frac{1}{10} a^{9} + \frac{14}{65} a^{8} + \frac{1}{13} a^{7} - \frac{37}{130} a^{6} - \frac{22}{65} a^{5} - \frac{3}{52} a^{4} + \frac{18}{65} a^{3} - \frac{28}{65} a^{2} + \frac{24}{65} a + \frac{4}{13}$, $\frac{1}{520} a^{17} + \frac{1}{65} a^{15} + \frac{3}{130} a^{14} + \frac{29}{130} a^{13} - \frac{2}{65} a^{12} + \frac{43}{260} a^{11} + \frac{7}{65} a^{10} + \frac{3}{52} a^{9} - \frac{16}{65} a^{8} - \frac{41}{130} a^{7} - \frac{7}{130} a^{6} - \frac{191}{520} a^{5} - \frac{24}{65} a^{4} - \frac{101}{260} a^{3} + \frac{7}{130} a^{2} - \frac{49}{130} a + \frac{4}{13}$, $\frac{1}{1771120} a^{18} + \frac{817}{885560} a^{17} - \frac{453}{442780} a^{16} - \frac{3017}{88556} a^{15} - \frac{16077}{442780} a^{14} + \frac{42429}{442780} a^{13} - \frac{15741}{177112} a^{12} - \frac{7791}{88556} a^{11} + \frac{165809}{885560} a^{10} + \frac{30649}{221390} a^{9} - \frac{21259}{442780} a^{8} + \frac{5522}{110695} a^{7} + \frac{71057}{1771120} a^{6} - \frac{16179}{68120} a^{5} - \frac{407449}{885560} a^{4} - \frac{59227}{442780} a^{3} + \frac{43285}{88556} a^{2} + \frac{14197}{221390} a + \frac{5179}{22139}$, $\frac{1}{7973924968841613354483040} a^{19} + \frac{677717625051966329}{3986962484420806677241520} a^{18} - \frac{2784450570573196124}{19168088867407724409815} a^{17} + \frac{3086892906570412704257}{1993481242210403338620760} a^{16} - \frac{48454580373208481143977}{1993481242210403338620760} a^{15} + \frac{44707004260238592542327}{1993481242210403338620760} a^{14} - \frac{450669142888865145806433}{3986962484420806677241520} a^{13} - \frac{155202725590594489767853}{1993481242210403338620760} a^{12} - \frac{88483961816127475249387}{3986962484420806677241520} a^{11} + \frac{4024192439617816187079}{99674062110520166931038} a^{10} + \frac{99493107400677226181467}{1993481242210403338620760} a^{9} - \frac{126617834927658993061959}{996740621105201669310380} a^{8} - \frac{2818017256456809086078847}{7973924968841613354483040} a^{7} - \frac{1031810477830757681019003}{3986962484420806677241520} a^{6} - \frac{1638399150765970119791631}{3986962484420806677241520} a^{5} - \frac{518473979082371143056903}{1993481242210403338620760} a^{4} + \frac{579979709313573711801987}{1993481242210403338620760} a^{3} + \frac{358804650672799933597543}{996740621105201669310380} a^{2} + \frac{9091853983535667520413}{19168088867407724409815} a + \frac{4398091836987065941807}{49837031055260083465519}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 478264.707493 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-122}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{-2}, \sqrt{61})\), 5.1.238144.1 x5, 10.0.27675731591168.1, 10.0.453700517888.1 x5, 10.2.3459466448896.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |