Normalized defining polynomial
\( x^{20} - 3 x^{19} - 18 x^{18} + 60 x^{17} + 193 x^{16} - 529 x^{15} - 906 x^{14} + 1894 x^{13} + 2040 x^{12} - 3325 x^{11} + 516 x^{10} - 3941 x^{9} + 21467 x^{8} - 56363 x^{7} + 81372 x^{6} - 111903 x^{5} + 175479 x^{4} - 114989 x^{3} + 56653 x^{2} - 53508 x + 20335 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7629922286089782470241764351830057=19^{15}\cdot 43^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{35} a^{17} - \frac{13}{35} a^{16} + \frac{9}{35} a^{15} - \frac{1}{5} a^{14} - \frac{6}{35} a^{13} - \frac{1}{5} a^{12} - \frac{1}{35} a^{11} - \frac{2}{5} a^{10} + \frac{3}{7} a^{9} - \frac{17}{35} a^{8} - \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{11}{35} a^{5} + \frac{17}{35} a^{4} + \frac{3}{7} a^{3} + \frac{2}{35} a^{2} - \frac{8}{35} a$, $\frac{1}{35} a^{18} + \frac{3}{7} a^{16} + \frac{1}{7} a^{15} + \frac{8}{35} a^{14} - \frac{3}{7} a^{13} + \frac{13}{35} a^{12} + \frac{8}{35} a^{11} + \frac{8}{35} a^{10} + \frac{3}{35} a^{9} - \frac{16}{35} a^{8} - \frac{6}{35} a^{6} + \frac{2}{5} a^{5} - \frac{9}{35} a^{4} - \frac{13}{35} a^{3} - \frac{17}{35} a^{2} + \frac{1}{35} a$, $\frac{1}{43920211455350891287193214445277439411449492753825} a^{19} + \frac{482728769583822835753627962560157486287420110504}{43920211455350891287193214445277439411449492753825} a^{18} - \frac{8587389755987694472046461720239305410484200232}{1756808458214035651487728577811097576457979710153} a^{17} - \frac{3186058465695874034208131127991242032825085416948}{8784042291070178257438642889055487882289898550765} a^{16} + \frac{10248845794605937465011772307162607090212677690288}{43920211455350891287193214445277439411449492753825} a^{15} - \frac{4310534583744739674043664042315835421623074110113}{43920211455350891287193214445277439411449492753825} a^{14} - \frac{162343422235561785045754444133724823709455056736}{6274315922192984469599030635039634201635641821975} a^{13} + \frac{2295735607741876864661200949427464690343496223771}{8784042291070178257438642889055487882289898550765} a^{12} - \frac{91075099764004001339482783667979612308467936678}{1254863184438596893919806127007926840327128364395} a^{11} + \frac{587506029397785803766426467509017205704570638872}{8784042291070178257438642889055487882289898550765} a^{10} + \frac{2414603814357382335285405166393745423044037797383}{6274315922192984469599030635039634201635641821975} a^{9} - \frac{20985030253818176774463718181208871623665995225654}{43920211455350891287193214445277439411449492753825} a^{8} - \frac{994810556674526212666275483545423208301364931568}{6274315922192984469599030635039634201635641821975} a^{7} + \frac{508597846183717340103843944493695978738751003526}{8784042291070178257438642889055487882289898550765} a^{6} + \frac{2688719524191699565378407914608957507764269040781}{6274315922192984469599030635039634201635641821975} a^{5} - \frac{15673824737483659414564937618317363371923605581299}{43920211455350891287193214445277439411449492753825} a^{4} + \frac{8486037273360576389392045998753774867566181160551}{43920211455350891287193214445277439411449492753825} a^{3} + \frac{16288681599515971897979062748274869989141862357573}{43920211455350891287193214445277439411449492753825} a^{2} - \frac{655611785871946054676114814736162148323744102066}{43920211455350891287193214445277439411449492753825} a - \frac{457337009948356990400583619277804519625944020388}{1254863184438596893919806127007926840327128364395}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281681007.343 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $C_5:D_4$ |
| Character table for $C_5:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.294937.1, 5.5.667489.1, 10.0.8465289737299.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 43 | Data not computed | ||||||