Normalized defining polynomial
\( x^{20} - 3 x^{19} + 11 x^{18} - 9 x^{17} + 29 x^{16} + 26 x^{15} + 169 x^{14} - 45 x^{13} + 1028 x^{12} + 812 x^{11} + 2595 x^{10} + 2965 x^{9} + 6133 x^{8} + 7447 x^{7} + 9309 x^{6} + 8419 x^{5} + 6763 x^{4} + 4568 x^{3} + 2598 x^{2} + 900 x + 139 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(762378983303206514165048828125=5^{10}\cdot 61^{7}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1937} a^{18} - \frac{632}{1937} a^{17} + \frac{280}{1937} a^{16} - \frac{303}{1937} a^{15} + \frac{495}{1937} a^{14} + \frac{951}{1937} a^{13} - \frac{379}{1937} a^{12} - \frac{734}{1937} a^{11} - \frac{141}{1937} a^{10} + \frac{21}{149} a^{9} + \frac{687}{1937} a^{8} - \frac{158}{1937} a^{7} - \frac{464}{1937} a^{6} - \frac{558}{1937} a^{5} - \frac{609}{1937} a^{4} + \frac{448}{1937} a^{3} - \frac{544}{1937} a^{2} - \frac{451}{1937} a - \frac{656}{1937}$, $\frac{1}{9183015676650977259311449446135497} a^{19} + \frac{607487333343735335859331452}{46614292774878057153865225614901} a^{18} + \frac{4451981327645068940149618672092336}{9183015676650977259311449446135497} a^{17} + \frac{841630269915031988456851429509991}{9183015676650977259311449446135497} a^{16} - \frac{3642798778270794781154585842679820}{9183015676650977259311449446135497} a^{15} - \frac{163504781129441779076949554022761}{706385821280844404562419188164269} a^{14} + \frac{3835769940572642208983627828470690}{9183015676650977259311449446135497} a^{13} - \frac{4307579803563337096894197623213367}{9183015676650977259311449446135497} a^{12} + \frac{3395469257127183181396256938903174}{9183015676650977259311449446135497} a^{11} + \frac{1012263138044912858611480031565555}{9183015676650977259311449446135497} a^{10} - \frac{286350221073596907595654386417865}{9183015676650977259311449446135497} a^{9} - \frac{3179791726343094441992054996685615}{9183015676650977259311449446135497} a^{8} - \frac{3268414112410404747452242300305330}{9183015676650977259311449446135497} a^{7} + \frac{2582165871151240595901422672652664}{9183015676650977259311449446135497} a^{6} - \frac{17997117510284507489052968606908}{64216892843713127687492653469479} a^{5} - \frac{2004978633113812474145303179275786}{9183015676650977259311449446135497} a^{4} - \frac{3109889997849886722035507327931699}{9183015676650977259311449446135497} a^{3} + \frac{269718973816544108530611256742649}{706385821280844404562419188164269} a^{2} - \frac{128700866158326696873474987602470}{834819606968270659937404495103227} a + \frac{3441195245601199936353446714644794}{9183015676650977259311449446135497}$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 266746.74584 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 960 |
| The 35 conjugacy class representatives for t20n174 |
| Character table for t20n174 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1525.1, 5.5.24217.1, 10.10.1832697153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 397 | Data not computed | ||||||