Normalized defining polynomial
\( x^{20} - 25 x^{16} + 60 x^{14} + 165 x^{12} - 270 x^{10} - 2680 x^{8} + 6120 x^{6} + 2080 x^{4} - 2400 x^{2} + 2880 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(755827200000000000000000000000=2^{30}\cdot 3^{10}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{6} a^{7} - \frac{1}{4} a^{5} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{12} + \frac{1}{24} a^{8} - \frac{1}{4} a^{6} + \frac{7}{24} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{9} - \frac{1}{4} a^{7} + \frac{7}{24} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{10} + \frac{5}{48} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} - \frac{5}{12} a^{2}$, $\frac{1}{48} a^{15} - \frac{1}{48} a^{11} + \frac{5}{48} a^{7} + \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{5}{12} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1947264} a^{16} + \frac{247}{324544} a^{14} - \frac{1}{48} a^{13} + \frac{14447}{1947264} a^{12} + \frac{40045}{973632} a^{10} + \frac{5}{48} a^{9} + \frac{192869}{1947264} a^{8} - \frac{5231}{44256} a^{6} + \frac{11}{48} a^{5} + \frac{60157}{486816} a^{4} + \frac{3}{8} a^{3} - \frac{2525}{60852} a^{2} + \frac{1}{4} a + \frac{10073}{40568}$, $\frac{1}{3894528} a^{17} + \frac{247}{649088} a^{15} - \frac{1}{96} a^{14} + \frac{14447}{3894528} a^{13} - \frac{13697}{649088} a^{11} - \frac{1}{32} a^{10} - \frac{293947}{3894528} a^{9} - \frac{1}{8} a^{8} - \frac{2973}{29504} a^{7} + \frac{5}{32} a^{6} - \frac{426659}{973632} a^{5} - \frac{7}{16} a^{4} + \frac{12681}{40568} a^{3} + \frac{1}{24} a^{2} + \frac{10073}{81136} a - \frac{1}{2}$, $\frac{1}{1756432128} a^{18} + \frac{85}{439108032} a^{16} - \frac{1}{96} a^{15} + \frac{17551235}{1756432128} a^{14} - \frac{1}{48} a^{13} - \frac{1766515}{109777008} a^{12} - \frac{1}{32} a^{11} + \frac{41874265}{1756432128} a^{10} - \frac{1}{48} a^{9} + \frac{12353215}{878216064} a^{8} + \frac{5}{32} a^{7} + \frac{26041645}{146369344} a^{6} - \frac{5}{24} a^{5} + \frac{73936529}{219554016} a^{4} - \frac{1}{12} a^{3} + \frac{4836457}{9979728} a^{2} - \frac{1}{4} a - \frac{5629979}{18296168}$, $\frac{1}{3512864256} a^{19} + \frac{85}{878216064} a^{17} - \frac{19041101}{3512864256} a^{15} - \frac{1766515}{219554016} a^{13} - \frac{1}{48} a^{12} - \frac{67902743}{3512864256} a^{11} + \frac{12353215}{1756432128} a^{9} + \frac{5}{48} a^{8} + \frac{35189729}{292738688} a^{7} + \frac{46492277}{439108032} a^{5} - \frac{13}{48} a^{4} + \frac{226079}{6653152} a^{3} - \frac{1}{8} a^{2} + \frac{12666189}{36592336} a + \frac{1}{4}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4833940.00984 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.72000.2, 5.1.1800000.1 x5, 10.2.16200000000000.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1800000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||