Normalized defining polynomial
\( x^{20} - 5 x^{19} + 18 x^{18} - 39 x^{17} + 73 x^{16} - 112 x^{15} + 174 x^{14} - 242 x^{13} + 286 x^{12} - 320 x^{11} + 317 x^{10} - 336 x^{9} + 268 x^{8} - 183 x^{7} + 164 x^{6} - 83 x^{5} + 52 x^{4} - 16 x^{3} + 9 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75570724234611059753853009=3^{10}\cdot 61^{6}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3690219511145} a^{19} - \frac{884082209249}{3690219511145} a^{18} + \frac{414967285444}{3690219511145} a^{17} + \frac{35552024500}{738043902229} a^{16} + \frac{498567645083}{3690219511145} a^{15} - \frac{289861101554}{3690219511145} a^{14} - \frac{242352352624}{738043902229} a^{13} + \frac{1270696514203}{3690219511145} a^{12} + \frac{1408937117529}{3690219511145} a^{11} + \frac{1552993303259}{3690219511145} a^{10} + \frac{9074610221}{3690219511145} a^{9} - \frac{352257915007}{738043902229} a^{8} + \frac{15999507978}{3690219511145} a^{7} - \frac{213746002411}{738043902229} a^{6} + \frac{1659527481459}{3690219511145} a^{5} + \frac{1543629861836}{3690219511145} a^{4} - \frac{94967045562}{3690219511145} a^{3} - \frac{608132659578}{3690219511145} a^{2} - \frac{1769591929704}{3690219511145} a + \frac{1428971656029}{3690219511145}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1394686377077}{3690219511145} a^{19} + \frac{6509228914628}{3690219511145} a^{18} - \frac{22573695769528}{3690219511145} a^{17} + \frac{8994392037037}{738043902229} a^{16} - \frac{79914032782326}{3690219511145} a^{15} + \frac{114199074712578}{3690219511145} a^{14} - \frac{35214031659632}{738043902229} a^{13} + \frac{235282652929924}{3690219511145} a^{12} - \frac{254530412991608}{3690219511145} a^{11} + \frac{270477554896917}{3690219511145} a^{10} - \frac{245642293088672}{3690219511145} a^{9} + \frac{54436618934112}{738043902229} a^{8} - \frac{171673894838431}{3690219511145} a^{7} + \frac{16635534700580}{738043902229} a^{6} - \frac{108713644780598}{3690219511145} a^{5} + \frac{22935607117768}{3690219511145} a^{4} - \frac{16085225437836}{3690219511145} a^{3} - \frac{13252360163484}{3690219511145} a^{2} - \frac{2383196858422}{3690219511145} a + \frac{265686700087}{3690219511145} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90268.3287749 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 72 conjugacy class representatives for t20n368 are not computed |
| Character table for t20n368 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.24217.1, 10.0.142510530627.1, 10.4.8693142368247.1, 10.6.35774248429.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 397 | Data not computed | ||||||